DEVELOPMENT OF A MODIFIED EAST-WEST INTERFACE FOR DISTRIBUTED CONTROL PLANE IN SOFTWARE DEFINED NETWORK FOR WIDE AREA NETWORKS

BY

ABDULFATAI DARE ADEKALE

DEPARTMENT OF COMPUTER ENGINEERING FACULTY OF ENGINEERING
AHMADU BELLO UNIVERSITY ZARIA, NIGERIA

JULY, 2018

i

DEVELOPMENT OF A MODIFIED EAST-WEST INTERFACE FOR DISTRIBUTED CONTROL PLANE IN SOFTWARE DEFINED NETWORK FOR WIDE AREA NETWORKS

BY

Abdulfatai Dare ADEKALE, B.Tech., (LAUTECH), 2012 P15EGCP8013
fataiadekale@gmail.com

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES,
AHMADU BELLO UNIVERSITY, ZARIA
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc.) DEGREE IN COMPUTER ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING FACULTY OF ENGINEERING
AHMADU BELLO UNIVERSITY, ZARIA NIGERIA

JULY, 2018

[bookmark: _TOC_250058]DECLARATION
I declare that this dissertation titled “Development of a Modified East-West Interface for Distributed Control Plane in Software Defined Network for Wide Area Networks” was carried out by me in the Department of Computer Engineering, Ahmadu Bello University Zaria. The information derived from literature has been duly acknowledged in the text and a list of references provided. No part of this dissertation was previously presented for another degree or diploma at this or any other institution.

Abdulfatai Dare ADEKALE						 (Student)	Signature		Date

viii

[bookmark: _TOC_250057]CERTIFICATION
This thesis entitled “DEVELOPMENT OF A MODIFIED EAST-WEST INTERFACE FOR DISTRIBUTED CONTROL PLANE IN SOFTWARE DEFINED NETWORK FOR
WIDE AREA NETWORKS “ by Abdulfatai Dare ADEKALE meets the regulations governing the award of the degree of Master of Science (M.Sc.) in Computer Engineering of the Ahmadu Bello University, and is approved for its contribution to knowledge and literary presentation.

Dr. E. A. Adedokun						 (Chairman, Supervisory Committee)		Signature			Date

	Prof. M. B. Mu’azu
	 	
	 	

	(Member, Supervisory Committee)
	Signature
	Date

Prof. M. B. Mu’azu				
(Head of Department)	Signature	Date

Prof. S. Z. Abubakar						 (Dean, School of Postgraduate Studies)		Signature			Date

[bookmark: _TOC_250056]DEDICATION
This research work is dedicated to Almighty Allah (S.W.T), my beloved parents, and my entire family.

[bookmark: _TOC_250055]ACKNOWLEDGMENT
All praises are due to Almighty Allah, the most gracious and most merciful for providing His infinite blessings and guidance for the completion of this research work.
Foremost, my sincere gratitude goes to the chairman of my supervisory committee, Dr. E.
A. Adedokun, for his tireless effort, patience, guidance, advice, support and encouragement to the successful completion of this dissertation. I would like to thank my co-supervisor: Prof. M. B. Mu’azu, for his contributions, guidance, support and relentless efforts. The quality of this research work would not be possible without your assistance and supervision.
I appreciate all the lecturers of Computer Engineering Department, Ahmadu Bello University, namely; Dr. T. H. Sikiru, Dr. I. J. Umoh, Dr. M. B. AbdulRazaq, Dr. I. A. Bello, Mrs. B. Yahaya, Mr. I. Yusuf, Mrs. Z. M. Abubakar and other staff for the valuable contributions and encouragement.
My sincere thanks to Mr. Bashir O. Sadiq and Mr. Tijjani A. Salawudeen for all the research discussions, encouragement, assistance and all the fun we had together in NLNG Laboratory. I thank Mr. Ajayi Oreofe for his support, brotherly advice and guidance. I praise the enormous amount of help, valuable contributions, suggestions and constructive criticism of the Computer-Control Research Group.
I am grateful to my friends, my class governor Mr. Lukman and the entire P15 and P16 sets of the Computer Engineering Department; thanks for the support. To Mr. Aliyu Garba, I say thank you for the programming discussions.
Last but not the least, special thanks and deepest appreciation to my parents: Mr. R. Adekale and Mrs. K. B. Adekale for their endless love, unconditional support, kind advice, understanding, and prayers. To my siblings Idris Adekale, Lukman Adekale, Khadijah Adekale, and AbdulQadir Adekale, I say a big thank you for your support and prayers. My gratitude goes to my uncles Mr. Afeez Adekale (Last-born) and Mr. Hassan Zakari (Sir T.), and the entire Adekale family.
I am grateful to everyone, for the support and love. May Almighty Allah bless you all.

Abdulfatai Dare ADEKALE July 2018

[bookmark: _TOC_250054]ABSTRACT
This research is aimed at the development of a modified East-West Interface for distributed control plane in Software Defined Network (SDN) for Wide Area Network (WAN). The East-West Interface is important in achieving communication across a Software Defined WAN, to enable scalability and distribution of the control plane. The Communication Interface for Distributed Control Plane (CIDC) was developed to ensure communication in WANs. However, the interface does not address the synchronization of different modules in the controller. This synchronization enables a consistent high availability, policy updating and efficient communication among controllers, needed for SDN to scale in a WAN environment. The modified-CIDC (mCIDC) is therefore developed using the ISyncService that ensures synchronization of state across the different modules in the controller, and among controllers in the WAN. The performance of the mCIDC and CIDC was compared using captured TCP (Transmission Control Protocol) packets, TCP errors and inter-controller communication overload (ICO). The results indicated that for Claranet_2, mCIDC showed a better performance in minimizing the number of Captured TCP Packets, TCP Errors and ICO by 26.55%, 17.89%, and 19.35% respectively when compared with CIDC. While for Claranet_3; 15.82%, 21.60% and 29.25% for Captured TCP Packets, TCP Errors and ICO respectively. For network policies with Claranet_2, mCIDC indicated a better performance in minimize Captured TCP Packets, TCP Errors and ICO by 16.34%, 17.77% and 44.99% respectively. While network policies with Claranet_3; 15.51%, 29.85% and 22.98% for Captured TCP Packets, TCP Errors and ICO respectively. This shows that the mCIDC ensures communication by transmitting the necessary required packets (information) among controllers with reduced TCP errors and fewer overloads.

[bookmark: _TOC_250053]TABLE OF CONTENTS

DECLARATION	ii
CERTIFICATION	iii
DEDICATION	iv
ACKNOWLEDGMENT	v
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	x
LIST OF TABLES	xii
LIST OF APPENDICES	xiii
LIST OF ABBREVIATIONS	xiv
CHAPTER ONE: INTRODUCTION
Background of Research	1
Significance of Research	3
Statement of Problem	3
Aims and Objectives	3
Scope of the Study	4
CHAPTER TWO: LITERATURE REVIEW
Introduction	5
Review of Fundamental Concepts	5
Traditional networks (Legacy Networks)	5
Software Defined Networking (SDN)	6
SDN Architecture	8
SDN Communication Interface	9
Southbound interfaces	9
Northbound interfaces	10
East/Westbound interfaces	10
Controller	12
Control Architecture	13
Single Control Plane	13
Multiple Control Plane	13
SDN Controllers	15
Floodlight	16
Open Flow	17
Open Flow Protocol	18
SDN and WAN	18
Multi-domain	19
CIDC	20
Simulation and Emulation Tools	21
Mininet Network Emulator	21
Graphical Network Simulator-3 (GNS3)	22
Iperf	22
Wireshark	23
Performance Metrics	23
Captured TCP packets	23
TCP errors	23
Inter-controller Communication Overload (ICO)	23
Review of Similar Works	24
CHAPTER THREE: MATERIALS AND METHODS
Introduction	32
Materials	32
Hardware	32
VM Workstation Pro v12.0.1.3	32
Floodlight Controller	32
Mininet	33
Methods	33
Claranet Network Topology	34
GNS3	35
CIDC Operation	36
Modification of CIDC	37
Information Exchange by ISyncService	38
Development of Network Policies	39
Experimental Description	39
Performance Evaluation	41
CHAPTER FOUR: RESULTS AND DISCUSSION
Introduction	42
Experimental Connection	42
Performance Analysis without Network Policies	42
Result Analysis of CIDC without Network Policies	43
Result Analysis for mCIDC without Network Policies	46
Performance Analysis with Network Policies	49
Result Analysis of CIDC with Network Policies	50
Result Analysis of mCIDC with Network Policies	53
Performance Percentage Improvement of mCIDC over CIDC	56
Comparison of CIDC and mCIDC without Network Policies	57
Comparison of CIDC and mCIDC with Network Policies	58
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS
Summary	59
Conclusion	60
Limitation	60
Significant Contributions	60
Recommendations for Further Work	61
REFERENCES	62
APPENDICES	66

[bookmark: _TOC_250052]LIST OF FIGURES
Figure 2.1: Components of Traditional Network Device	6

Figure 2.2: Components of SDN	7

Figure 2.3: SDN Architecture	9

Figure 2.4: East-West Interface for different SDN domains	12
Figure 2.5: Logically Centralized but Physically Distributed Control Architecture	14

Figure 2.6: Logically Distributed Control planes	15

Figure 2.7 Architecture of Floodlight Controller	17

Figure 2.8: Multi-domain SD-WAN	20

Figure 2.9: CIDC Algorithm	21

Figure 3.1: Claranet Network Topology	35

Figure 3.2: GNS3 VMs Connection	36

Figure 3.3: Snippet of CIDC codes	37

Figure 3.4: Flowchart mCIDC	38

Figure 3.5: Snippet of mCIDC codes	39

Figure 3.6: Start Network Topology with Mininet	40

Figure 4.1: Connection of Three controllers on Eclipse Floodlight Interface	42

Figure 4.2: Plot of Captured TCP Packets against TCP Errors for CIDC Claranet_2	44

Figure 4.3: Plot Captured TCP Packets against TCP Errors for CIDC Claranet_3	45

Figure 4.4: Plot of ICO against TCP Errors for CIDC Claranet_2	45

Figure 4.5: Plot of ICO against TCP Errors for CIDC Claranet_3	46

Figure 4.6: Plot of Captured TCP Packets against TCP Errors for mCIDC Claranet_2	48

Figure 4.7: Plot of Captured TCP Packets against TCP Errors for mCIDC Claranet_3 48 Figure 4.8: Plot of ICO against TCP Errors for mCIDC Claranet_2	49
Figure 4.9: Plot of ICO against TCP Errors for mCIDC Claranet_3	49

Figure 4.10: Plot of Captured TCP Packets against TCP Errors for CIDC Claranet_2
with Network Policies	51
Figure 4.11: Plot of Captured TCP Packets against TCP Errors for CIDC Claranet_3
with Network Policies	52
Figure 4.12: Plot of ICO against TCP Errors for CIDC Claranet_2 with Network
Policies	52
Figure 4.13: Plot of ICO against TCP Errors for CIDC Claranet_3 with Network
Policies	53
Figure 4.14: Plot of Captured TCP Packets against TCP Errors for mCIDC Claranet_2 with Network Policies	55
Figure 4.15: Plot of Captured TCP Packets against TCP Errors for mCIDC Claranet_3 with Network Policies	55
Figure 4.16: Plot of ICO against TCP Errors for mCIDC Claranet_2 with Network Policies	56
Figure 4.17: Plot of ICO against TCP Errors for mCIDC Claranet_3 with Network Policies	56

[bookmark: _TOC_250051]LIST OF TABLES
Table 2.1: Summary of Open Source SDN Controller Platforms	16
Table 3.1: Evaluated Network Topology	41

Table 4.1: Result Analysis of CIDC Claranet_2 without Network Policies	43
Table 4.2: Result Analysis of CIDC Claranet_3 without Network Policies	44
Table 4.3: Result Analysis of mCIDC Claranet_2 without Network Policies	46

Table 4.4: Result Analysis of mCIDC Claranet_3 without Network Policies	47

Table 4.5: Result Analysis of CIDC Claranet_2 with Network Policies	50

Table 4.6: Result Analysis of CIDC Claranet_3 with Network Policies	51

Table 4.7: Result Analysis of mCIDC Claranet_2 with Network Policies	54

Table 4.8: Result Analysis of mCIDC Claranet_3 with Network Policies	54

Table 4.9: Performance Improvement of mCIDC over CIDC without Network Policies57 Table 4.10: Performance Improvement of mCIDC over CIDC with Network Policies	58

[bookmark: _TOC_250050]LIST OF APPENDICES
Appendix A: VMware and Ubuntu16.04 LTS installation	66
Appendix B: Floodlight Controller Installation	67
Appendix C: Mininet Installation	68
Appendix D: Network Topology and Python Script	69
Appendix E: Download and Install GNS3	76
Appendix F: CIDC Codes	77
Appendix G: mCIDC Codes	102
Appendix H: Network Policies	115
Appendix I: Floodlight Launch	117
Appendix J: Module Creation and Registering	118

[bookmark: _TOC_250049]LIST OF ABBREVIATIONS

	ACL
	Access Control List

	AMQP
	Advanced Message Queuing Protocol

	API
	Application Programming Interface

	BGP
	Border Gateway Protocol

	CIDC
	Communication Interface for Distributed Control Plane

	CLI
	Command Line Interface

	CPU
	Central Processing Unit

	DISCO
	Distributed SDN Control Plane

	DHT
	Distributed Hash Table

	DMC
	Distributed Multi-Domain Controllers

	EWBridge
	East-West Bridge

	FEs
	Forwarding Elements

	ForCES
	Forwarding and Control Element Separation

	GMPLS
	Generalized Multiprotocol Label Switching

	GNS3
	Graphical Network Simulator 3

	ICO
	Inter-controller Communication Overload

	IDE
	Integrated Development Environment

	LAN
	Local Area Network

	LLDP
	Link Layer Discovery Protocol

	mCIDC
	Modified Communication Interface for Distributed Control Plane

	MPLS
	Multiprotocol Label Switching

	NAT
	Network Address Translation

	NFV
	Network Function Virtualization

	NIB
	Network Information Base

	NOS
	Network Operating System

	ODL
	OpenDaylight

	ONF
	Open Networking Foundation

	ONOS
	Open Network Operating System

	OVSDB
	Open vSwitch Database

	PCEP
	Path Computation Element Protocol

	QOS
	Quality of Service

	REST
	Representational State Transfer

	RPCs
	Remote Procedure Calls

	SDN
	Software Defined Network

	SPOF
	Single Point of Failure

	SSL
	Secure Socket Layer

	TCP
	Transmission Control Protocol

	TLS
	Transport Layer Security

	TOR
	Top of Rack

	UDP
	User Datagram Protocol

	VM
	Virtual machine

	WAN
	Wide Area Network

[bookmark: _TOC_250048]CHAPTER ONE INTRODUCTION
1.1 [bookmark: _TOC_250047]Background of Research
Computer networks need network devices such as routers and switches to transmit information over the network. These network devices require protocols and policies for effective communication (Nunes et al., 2014). Traditional networks are faced with many challenging concerns (Chen et al., 2015) such as; implementing high-level policies in the network, and manually configuring each network device using low-level configuration commands while considering the network conditions. There is also the need for network environments to be dynamic (Fault-tolerant, Load changes, Automatic Reconfiguration and Response Mechanism), making it challenging to enforce required network policies (Kreutz et al., 2015). In addition to the increasing complexity of Network devices, Traditional networks, also known as legacy networks, are vertically integrated (Kreutz et al., 2015). The control plane and data plane are bundled inside the networking devices, preventing innovation and network flexibility. Another challenge posed by traditional networks is “Internet ossification”; the difficulty in evolving the Internet in terms of physical infrastructures, protocols and performance (Nunes et al., 2014). Emerging Internet applications and services have become increasingly complex and demanding, as such the Internet needs to evolve to address these challenges (Nunes et al., 2014).
Software defined networking (SDN) is a new networking paradigm that addresses the limitations of traditional networks by simplifying network management and enable innovation and evolution (Kreutz et al., 2015). SDN separates the control plane from the data plane. While the control plane decides how to handle the traffic, the data plane forwards traffic according to decisions that the control plane makes (Feamster et al., 2013). SDN has gained immense interest from the industry and academia (Jarraya et al., 2014).

1

It transfers the intelligence from the traditional network devices to a centralized control plane and enables network programming. SDN is now envisioned for multi-datacenter environments e.g. B4 (Jain et al., 2013) and WANs (Wide Area Networks). This can only be achieved by distributing the SDN control plane. A distributed control plane is necessary to tackle single point of failure (SPOF); which makes SDN architecture highly vulnerable to attacks (Kreutz et al., 2013). It also addresses the challenges of scalability and performances in large networks.
The distributed control plane involves the use of multiple controllers, and this is divided into: logically centralized and logically distributed control planes (Blial et al., 2016). The logically centralized control plane balances charges between controllers and uses a shared database to unify decisions. However, it requires extensive synchronization between controllers and it is not suitable for large and highly distributed networks (e.g. Multi- domain networks). The logically distributed control plane (logically distributed controllers) is suitable for large distributed networks, where each controller manages its domain and distributes the necessary data to other controllers. The primary use of this category is in large data centers and WAN networks that suffer from the high cost and latency, due to the complexity of the infrastructure and protocol e.g. border gateway protocol (BGP), and multi-protocol label switching (MPLS) that handle the traffic (Benamrane et al., 2017).
In a logically distributed SDN architecture (e.g. WAN), the communication between multiple controllers is of primary importance (Benamrane et al., 2017). The communication between the controllers at the control plane is handled by the East-West Interface (or API). Currently, there is no standard for the East-West Interface (Jarraya et al., 2014). Existing research on East-West interface does not consider several characteristics of a real WAN such as different network policies, with high availability.

100

1.2 [bookmark: _TOC_250046]Significance of Research
Networks and network technologies have evolve over the years, providing a need for effective and efficient network management across all kinds of networks (small, medium and large networks). This network management must be reliable, scalable and provide fine-grained performance. This necessitate the development of SDN for WAN; providing forwarding, distribution and specification abstractions. This development will enable simple, scalable, cost-effective, efficient, secure, and enhance connectivity across the network(s). The significance of this research work is to ensure communication in WAN with different policies through policy updating and high availability; encouraging the development of SD-WAN. Previous researchers have not considered consistent high availability across controllers for East-West Communication.
1.3 [bookmark: _TOC_250045]Statement of Problem
The logically distributed architecture control plane address the issue of scalability in large networks such as WAN by providing an East-West Interface for communication among this networks. The East-West Interface needs to provide scalability through efficient and effective communication among controllers in a WAN network; considering real-time characteristics of WAN. Therefore, there is a need for an Interface that considers high availability for policy updating and decision making, and ensures communication among WANs with different policies. This research is aimed at developing a modified East-West Interface for WANs by incorporating high availability across the controllers.
1.4 Aim and Objectives
The aim of this research is to develop a modified East-West interface for distributed control plane in Software Defined Network (SDN) for Wide Area Networks (WANs).
To achieve this aim, the following objectives were set:

1. Emulation of the network environment on a virtual machine (VM) running Ubuntu

16.04 LTS necessary for the implementation of the East-West communication interface for distributed control plane (CIDC) developed by Benamrane et al., 2017.
2. Development of an improved East-West interface based on the network emulated in (1) called the “Modified-CIDC” (mCIDC) to connect the different WANs and network policies.
3. Evaluation of performance of the mCIDC with CIDC using captured TCP packets, TCP errors, and inter-controller communication overload (ICO) as performance metrics.
1.5 [bookmark: _TOC_250044]Scope of the study
The research study considers the use of the same controller across the different WAN network.

[bookmark: _TOC_250043]CHAPTER TWO LITERATURE REVIEW
2.1 [bookmark: _TOC_250042]Introduction
The literature review comprises of the review of fundamental concepts and the review of similar works.
2.2 [bookmark: _TOC_250041]Review of Fundamental Concepts
In this section; fundamental concepts such as traditional networks, SDN, SDN Architecture, SDN Communication Interface, Controller, Control Architecture, SDN Controllers, OpenFlow, WAN, CIDC, Simulation and Emulation Tools, Iperf and Wireshark amongst others are reviewed.
2.2.1 [bookmark: _TOC_250040]Traditional Networks (Legacy Networks)
Traditional networks are usually hardware-centric networks; networks in which networking devices (routers, switches) have purpose-built application-specific integrated circuits (ASICs), and chips (Farhady et al., 2015). These networks are closed systems in which the networking devices have the control and forwarding mechanisms embedded within it and support manufacturer-specific control interfaces (Kreutz et al., 2015). Therefore, deploying new protocols, applications and services in traditional networks becomes a challenge, because all the networking devices need to be updated or replaced. In the vertically integrated traditional networks, the control plane provides information used to build a forwarding table. The data plane consults the forwarding table. The forwarding table is used by the network device to make a decision on where to send frames or packets entering the device. In the traditional network scenario, routers execute a specific algorithm to send the incoming packets to the next hop. For example, to access one website, the data packets have to move through 10 routers, i.e. 10 routers have to run the routing algorithm to serve one request made by the end user. In practice, there are

million web users accessing the same web content simultaneously, which create a lot of processing overhead at the router. Figure 2.1 shows a Traditional network device with its components (Masoudi & Ghaffari, 2016).
[image:]

[bookmark: _bookmark0]Figure 2.1: Components of Traditional Network Device (Masoudi & Ghaffari, 2016)

2.2.2 [bookmark: _TOC_250039]Software Defined Networking (SDN)
Open Networking Foundation (ONF) defines SDN as ‘‘an emerging network architecture where the network control is decoupled and separated from the forwarding mechanism and is directly programmable”. In SDN; the network intelligence is logically centralized in software-based controllers (the control plane), and network devices become simple packet forwarding devices (the data plane) that can be programmed via an open interface e.g. ForCES, OpenFlow (Nunes et al., 2014). SDN is dynamic, manageable and cost-effective.

It promises network evolution and innovation by simplifying and allowing the development of new protocols, services and applications. SDN is a network architecture with four pillars (Kreutz et al., 2015):
a) The control and data planes are decoupled.

b) Forwarding decisions are flow-based, instead of destination-based. The flow abstraction allows unifying the behaviour of different types of network devices, including routers, switches, firewalls and middleboxes.
c) Control logic is moved to an external entity, the so-called SDN controller or Network Operating System (NOS).
d) The network is programmable through software applications running on top of the NOS that interact with the underlying data plane devices, and controls the network resources.
Figure 2.2 shows the schematics of SDN and its components (Farhady et al., 2015).
[image:]

[bookmark: _bookmark1]Figure 2.2: Components of SDN (Farhady et al., 2015)

2.2.3 [bookmark: _TOC_250038]SDN Architecture
SDN is an emerging architecture that decouples the network control and forwarding functions. The SDN architecture is vertically split into three main functional layers as shown in Figure 2.3 (Jarraya et al., 2014). These functional layers are:
a) Infrastructure Layer: Also known as the data plane. It consists mainly of Forwarding Elements (FEs) including physical and virtual switches, routers and middleboxes accessible via an open interface and allows packet switching and forwarding.
b) Control Layer: Also known as the control plane. It consists of a set of software- based SDN controllers providing consolidated control functionality through open APIs, to supervise the network forwarding behavior through an open interface. Three communication interfaces allow the controllers to interact: southbound, northbound and east/westbound interfaces.
c) Application Layer: It mainly consists of the end-user business applications that consume the SDN communications and network services. Examples of such business applications include network visualization and security business applications. This is also called application plane.

[image:]

[bookmark: _bookmark2]Figure 2.3: SDN Architecture (Jarraya et al., 2014)
2.2.4 [bookmark: _TOC_250037]SDN Communication Interface
The controller in the control plane interacts with the functional layers (planes) through three open interfaces or APIs (Application Program Interfaces): Southbound API, East/West Bound API, and Northbound API (Jarraya et al., 2014).
2.2.4.1 Southbound Interfaces

Southbound Interfaces (or Southbound APIs) connects the control plane to the infrastructure layer, allowing interaction between the controller and the forwarding elements (Jarraya et al., 2014). OpenFlow is a protocol maintained by ONF; a foundational element for building SDN solutions and can be viewed as a promising implementation of such an interaction. OpenFlow is the most widely accepted and deployed open southbound standard for SDN, but it is not the only available southbound interface for SDN. Other Southbound APIs are (Kreutz et al., 2015): ForCES, OVSDB, POF, OpFlex, OpenState, ROFL, HAL and PAD.

2.2.4.2 Northbound Interfaces

This communication interface provide interaction between the control plane and the application layer, enabling the programmability of the controllers by exposing universal network abstraction data models and other functionalities within the controllers for use by applications at the application layer (Jammal et al., 2014). The northbound interface is mostly a software ecosystem, not a hardware one as is the case of the southbound APIs (Kreutz et al., 2015). It allows programming and managing of the network. Northbound API is an important API that support and enable innovative applications. Northbound APIs can enable basic network functions like path computation, loop avoidance, routing and security. Network applications such as load balancers, software defined security services and orchestration applications can be optimized through the northbound interface. At the time of this study, there is no standard northbound interface. Different SDN controllers have different Northbound APIs. Existing controllers such as Floodlight, Trema, NOX, Onix and OpenDaylight propose and define their own northbound (Kreutz et al., 2015).These various Northbound APIs can be broadly divided into three areas namely; RESTful APIs, specialized ad-hoc APIs and programming languages (Vijay Poonam and Vasudevan Deepika, 2016). RESTful APIs is the most commonly used kind of API to implement Northbound Interface.
2.2.4.3 East/Westbound Interfaces

This interface is an envisioned communication interface, which is not currently supported by an accepted standard (Jarraya et al., 2014). The main purpose of this interface is to synchronize states for high availability, by enabling communication between groups or federations of controllers (Wibowo et al., 2017). East/westbound APIs are very important in large networks or multi-domain networks with multiple controllers. The functions of these interfaces include import/export data between controllers, algorithms for data

consistency models, and monitoring /notification capabilities (Chen et al., 2015). East/Westbound APIs are essential components of distributed controllers. To identify and provide common compatibility and interoperability between different controllers, it is necessary to have standard east/westbound interfaces (Kreutz et al., 2015). These interfaces create a more scalable and dependable distributed control plane. For controllers to be interoperable with subordinate controllers and non-SDN controllers, the east/westbound interfaces must accommodate different controller interfaces with their specific set of services, and the diverse characteristics of the underlying infrastructure, including the diversity of technology, the geographic span and scale of the network, and the distinction between WAN and local area network (LAN) – potentially across administrative boundaries (ONF, 2014). (Jarschel et al., 2014) suggest a finer distinction between eastbound and westbound horizontal interfaces, referring to westbound interfaces as SDN-to-SDN protocols and controller APIs while eastbound interfaces would be used to refer to standard protocols used to communicate with legacy network control planes e.g. path computation element protocol (PCEP), generalized multi-protocol label switching (GMPLS). Figure 2.4 shows an East-West Interface for different SDN domains (Xie et al., 2015).

[image:]

[bookmark: _bookmark3]Figure 2.4: East-West Interface for Different SDN Domains (Xie et al., 2015)
2.2.5 [bookmark: _TOC_250036]Controller
The controller is the essential component in the control plane. SDN controllers in an SDN are the “brains” of the network (Stancu et al., 2015). It lies between network devices and the applications. The SDN controller is a software entity that opens SDN APIs to applications, and translates application’s request to actions on network devices using proprietary protocol or OpenFlow -like protocol with or without the support of the network operating system NOS (Yin et al., 2012). The NOS is a software responsible for monitoring and controlling a network system. The SDN controller can reside in NOS or run separately on a server in the network (Yin et al., 2012).
The controller is responsible for maintaining all the network protocols, policies and distributing appropriate instructions to the network devices (Jammal et al., 2014). Two of the most well-known protocols used by SDN Controllers to communicate with the switches/routers are OpenFlow and Open vSwitch Database (OVSDB). The controller is

responsible for determining how packets are handled and managing switch flow table. The controller is responsible to maintain the global viewpoint of the whole network and imposes control constraints on each flow by running a set of user-defined control applications. If the controller fails or becomes the performance bottleneck, the network will lose the advantages of SDN (Xie et al., 2015).
2.2.6 [bookmark: _TOC_250035]Control Architecture
The control architecture affects the performance and scalability of the controller. There are two categories of control architecture: single control plane and multiple control planes.
2.2.6.1 Single Control Plane

The control plane is managed by a physically single centralized controller. All the switches are managed centrally in the network, since they are all connected to the same instance. The single centralized controller represents a single point of failure, making the network highly vulnerable. SDN controller has a limited resource when handling an immense amount of request (Oktian et al., 2017); this creates scalability issue for the single controller.
2.2.6.2 Multiple Control Plane

This involves having multiple controllers sharing the network load equally. In this architecture; a controller can take over from a crash controller, solving the single point of failure problem in the single control plane. Currently, the multiple-control plane has two different implementation methods (Xie et al., 2015):
a) Logically centralized but physically distributed control planes: These controllers synchronize their local views about the network with each other, maintaining a global and consistent network with a view to making an optimal decision. This control plane balances charges between controllers and uses a shared database to unify decisions. Examples of the logically centralized control plane are: ONOS (Open Network Operating System),

HyperFlow, Onix and ODL (OpenDaylight). An illustration of a logically centralized but physically distributed control plane is shown in Figure 2.5 (Xie et al., 2015).
[image: http://ars.els-cdn.com/content/image/1-s2.0-S0140366415002200-gr2.jpg]

[bookmark: _bookmark4]Figure 2.5: Logically Centralized but Physically Distributed Control Architecture (Xie et al., 2015)
b) Logically distributed control planes: A local view of the whole network is usually sufficient to achieve given functions of software-defined networks, pursuing global view is not necessary. The controllers in the logically distributed control plane make decisions only using their local view. In this architecture, each controller manages its own domain and distributes the necessary data to other controllers. This architecture is suitable for large and distributed networks (e.g. large data centers and WAN networks), because it does not require extensive synchronization between controllers. Synchronizing network state can lead to network overload, due to frequent change of the whole network state. And, the inconsistent control state of the SDN significantly degrades the performance of many applications (Levin et al., 2012). Logically distributed control plane can be design using two methods: Hierarchical (vertical) and Flat (Horizontal). Examples of the logically distributed control plane are: Kandoo. Figure 2.6 illustrates the two design methods for a logically distributed control plane (Wibowo et al., 2017).

[image:]

[bookmark: _bookmark5]Figure 2.6: Logically Distributed Control Planes (Wibowo et al., 2017)
2.2.7 [bookmark: _TOC_250034]SDN Controllers
There are different kinds of SDN controllers. These controllers support OpenFlow and OVSDB; to control traffic and configure network devices. Some Open source OpenFlow controllers are shown in Table 2.1 (Wibowo et al., 2017):

Table 2.1: Summary of Open Source SDN Controller Platforms (Wibowo et al., 2017)

	Controller Name
	Programming

Language
	Organization
	Architecture

	Beacon
	Java
	Stanford University
	Centralized Multi-threaded

	ONOS
	Java
	ON. Lab
	Distributed

	Maestro
	Java
	Rice University
	Centralized Multi-threaded

	RYU
	Python
	NTT
	Centralized Multi-threaded

	POX
	Python
	Nicira
	Centralized

	Open Contrail
	Python
	Juniper
	Distributed

	Floodlight
	Java
	Big Switch Network
	Centralized Multi-threaded

	OpenDaylight
	Java
	Linux Foundation
	Distributed

2.2.7.1 Floodlight

This is based on Beacon and is Apache-licensed. It is one of the open source projects supported by Big Switch Networks; the controller can work with networks containing OpenFlow and non-OpenFlow components. It also integrates OpenStack cloud orchestration. According to Project Floodlight; Floodlight is designed to work with the growing number of switches, routers, virtual switches, and access points that support the OpenFlow standard. It is a Java-based controller, and uses a centralized, multi-threaded architecture. Its Northbound API is the REST (Representational State Transfer) API, and supports OpenFlow (version 1.0 -1.3) for southbound communication. The floodlight controller is used in this research work. The controller is used because of the numerous features it offers, this includes:
a) A module loading system that makes it simple to extend and enhance

b) Easy to use and set up with minimal dependencies

c) It supports a broad range of virtual- and physical- OpenFlow switches

d) High performance due to multi-threaded architecture

e) Support of an open community of developers.

Figure 2.7 shows the architecture of the Floodlight Controller (Ryan Wallner & Robert Cannistra, 2013).
[image: https://floodlight.atlassian.net/wiki/download/attachments/1343549/Floodlight-Diagram.png?version=2&modificationDate=1350979353000&cacheVersion=1&api=v2]

[bookmark: _bookmark6]Figure 2.7: Architecture of Floodlight Controller (Ryan Wallner & Robert Cannistra, 2013)
2.2.8 [bookmark: _TOC_250033]Open Flow
OpenFlow was first released by Stanford University in 2008 (McKeown et al., 2008). It is an open source communication protocol (OpenFlow Protocol) use for communication between the controllers (in the control plane) and networking devices (switches in the data plane) via the Southbound Interface. Since 2011, the OpenFlow switch specification has

been maintained and updated by the ONF. OpenFlow provides software-based access to the switch and router flow tables to enable dynamic network traffic management. The OpenFlow protocol provides management tools to manage features such as topology configuration or packet filtering (Wibowo et al., 2017). Controllers and Switches that support OpenFlow are called OpenFlow Controllers and OpenFlow Switches respectively. OpenFlow-enabled switches can be managed by one or more OpenFlow controllers.
2.2.8.1 Open Flow Protocol

The OpenFlow controller manages the switch flow table by adding, modifying and removing flow entries over the secure channel using the OpenFlow protocol. The secure channel is the OpenFlow channel (southbound interface) that connects the switches to the controller. The OpenFlow channel is usually encrypted using transport layer security (TLS), but can also operate directly over TCP (Jammal et al., 2014). An OpenFlow- enabled switch contains flow and group tables that include a number of entries, depending on the network device. An OpenFlow-enabled switch contains at least one flow table and group table, use to perform packet lookups and forwarding (Wibowo et al., 2017). The flow table consists of a set of flow entries. Each flow entry is used to match to the packet header fields, counters, and a set of instructions for matching packets (Jammal et al., 2014).
2.2.9 [bookmark: _TOC_250032]SDN and WAN
A WAN is a network that extends over a large geographical distance. It is a large and distributed network. WAN is usually faced with challenges such as scalability, performance and reliability. These challenges can be overcome using the multiple control plane architecture (multiple controller architecture). The multiple controller approach consists of logically centralized and fully distributed or multi-domain approaches (Xia et al., 2015). The fully distributed approach (logically distributed control plane) is most suitable because it does not require extensive synchronization between controllers. Also,

WAN are large networks that consists of multiple networks – the distributed control plane architecture supports the separation of the WAN into multiple SDN domains -Software Defined Wide Area Networks (SD-WAN). These multiple domains form the multi-domain architecture. To improve scalability in WAN; challenges such as global network knowledge (network traffic and state), high availability, real-time monitoring, decision making, fine-grained control and policy updating must be addressed (Shuhao and Baochun, 2015).
2.2.9.1 Multi-Domain

A domain in SDN can be referred to an SDN administrative domain. Multi-domain SDN requires interconnection of controllers in different domains to exchange information across the domain. Multi-domain SDN will enable the interconnection of global SDN domains, introduce interoperability between domains, and provide better provisioning of cross domain services. Each domain in a multi-domain is managed by one or more controllers. The east/westbound interface is very important in multi-domain communication. According to (Egilmez, 2014), the fully distributed SDN controller architectures, both vertical and horizontal approaches could be utilized for multi-domain SDN communication. Figure 2.8 illustrates a Multi-domain Software Defined - Wide Area Network (SD-WAN) (Phemius et al., 2014).

[image:]

[bookmark: _bookmark7]Figure 2.8: Multi-domain SD-WAN (Phemius et al., 2014)
2.2.10 [bookmark: _TOC_250031]CIDC
The CIDC uses the logically distributed control plane architecture to extend SDN for large multi-domain networks such as WAN (Benamrane et al., 2017). The CIDC interface is used by each Floodlight controller to synchronize communication with neighboring controllers. The CIDC interface is composed of four essential modules; Consumer, Producer, Data Updater and Data Collector. These modules are connected with Floodlight controller modules to communicate with the core elements of the controller. Each controller plays the role of a Consumer for external events (events outside its network) and Producer for local events (events within its network). The CIDC interface uses Netty framework to reduce resource consumption. The interface uses several communication modes; Notification (the Producer notifies all remote controllers when changes occur in its domain), Service (the Producer share any activated services such as SSL, Firewall and

Load Balancer) and Full (the Producer shares all events and services). Figure 2.9 shows the algorithm for the CIDC. The CIDC uses an event-driven paradigm (actions are made by events). The controller is active, when new events such as Packet-in are received. These new events are caught by event listeners and observers in the controller. There are listeners and observers for each kind of event.Applications
Start
Yes
New Rule
No
Producer

configuration
Treat Packets
initialize
DataUpdater
No
Connection
established
Yes
No
Yes
SSL
Process Handshake
for the first packet (Key creation) + Decrypt + Decode
Process Handshake for
the first packet (Pre – master secret and key creation) + Encode - Encrypt
Encode
No
Yes	SSL
Consumer 1
Consumer 2
Applications
Datacollector
Consumer 3
Stop
Decode
Channels ready
Wait for new Connections
Ignore

[bookmark: _bookmark8]Figure 2.9: CIDC Algorithm (Benamrane et al., 2017)
2.2.11 [bookmark: _TOC_250030]Simulation and Emulation Tools
Simulation and emulation software is of particular importance for fast prototyping and testing without the need for expensive physical devices (Kreutz et al., 2015). Some Simulation and emulation tools includes: Mininet, ns-3, OMNeT++, EstiNet 8.0, Trema, Mirage, GNS3, and Iperf.
2.2.11.1 Mininet Network Emulator

Mininet is a network emulator which creates a network of virtual hosts, switches, controllers, and links. Mininet hosts run standard Linux network software, and its switches support OpenFlow for highly flexible custom routing and SDN. Mininet creates a realistic virtual network, running real kernel, switch and application code, on a single machine (VM,

cloud or native), in seconds, with a single command. Mininet (Lantz et al., 2010) is the first system that provides a quick and easy way to prototype, and evaluates SDN protocols and applications. One of the key properties of Mininet is its use of software-based OpenFlow switches in virtualized containers, providing the exact same semantics of hardware-based OpenFlow switches (Kreutz et al., 2015). Networks emulated on Mininet can be move directly to practical networks composed of real hardware devices. Mininet can be used to support basic network topologies and create custom topologies, using python scripts.
2.2.11.2 Graphical Network Simulator-3 (GNS3)

GNS3 is a graphical network simulator that allows emulation of complex networks. It was first released in 2008, and allows the combination of virtual and real devices, used to simulate complex networks. GNS3 supports both emulated and simulated devices. It allows the virtualization of hardware devices. GNS3 supports cisco devices and network technologies with SDN, NFV, Linux and Docker.
2.2.11.3 Iperf

Iperf is a popular network tool that was developed for measuring TCP and user datagram protocol (UDP) bandwidth performance. It is a widely-used tool for network performance measurement and tuning. It enables the tuning of various parameters and characteristics of the TCP/UDP protocol, providing an insight into the network's bandwidth availability, delay, jitter and data loss. It is significant as a cross-platform tool that can produce standardized performance measurements for any network. Iperf has client and server functionality, and can create data streams to measure the throughput between the two ends in one or both directions.

2.2.12 Wireshark
Wireshark is a widely-used packet analyzer. It is free and open source. It is used for network troubleshooting and analysis. Wireshark is cross-platform; it runs on Linux, macOS, Windows and some other Unix-like operating systems. Wireshark uses pcap (packet capture) to capture packets in network traffic. It is used for software and communication protocol development and education. It supports different networking protocol, and is a standard network protocol analyzer used across many commercial and non-profit enterprises, government agencies and educational institutions.
2.2.13 Performance Metrics
Synchronization metrics such as Captured TCP Packets, TCP Errors and Inter-controller Communication Overload (ICO) that could affect response time and controller performance in a distributed architecture are considered as performance metrics. These performance metrics are used to evaluate the necessary data to synchronize during communication.
2.2.13.1 Captured TCP Packets

This is the TCP Packets captured using Wireshark Analyzer, between clients and server. The TCP Packets represents the necessary information transmitted across different controller domains.
2.2.13.2 TCP Errors

These are the TCP errors during conversations between client and server. These errors include: Out-of Order, Dup Ack, Lost Segment, Fast Retransmission, Windows Update and so on.
2.2.13.3 Inter-Controller Communication Overload (ICO)
This is the total rate of bidirectional traffic (Kbit/s) exchanged between controllers, during transmission.

2.3 [bookmark: _TOC_250029]Review of Similar Works
The communication of controllers in multi-domain networks (such as WAN) is very significant and this is best achieved by the East/Westbound interface.	For better understanding, some details about East/Westbound communication interface in distributed control plane and multi-domain, from the operational research perspective are presented. Koponen et al., (2010) presented the design and implementation of Onix, a distributed control platform for large-scale production networks. In their work, four components in the network (physical infrastructure, connectivity infrastructure, onix and control logic) were controlled by Onix. The network state was stored in the Network Information Base (NIB), and control applications were read and written to the NIB. Onix provided scalability and resilience, by replicating and distributing the NIB between multiple running instances. The network state consistency was provided using a replicated transactional database (for stronger consistency state) and a memory-based one-hop DHT- Distributed Hash Table (for the volatile inconsistent state). The evaluation results showed that Onix could partition the workload over multiple Onix instances. So, in case there was an overhead inside an Onix instance, already assigned switches could be reassigned to another Onix instance. However, not all applications require a network-wide view. This network-wide consistency cannot be maintained in large networks such as WAN.
Tootoonchian and Ganjali, (2010) presented HyperFlow, a logically centralized but physically distributed event-based control plane for OpenFlow. The HyperFlow network is composed of OpenFlow switches (forwarding elements), NOX controllers (decision elements) running an instance of the HyperFlow controller application and an event propagation system (based on publish/subscribe messaging paradigm). A distributed file system called WheelFS, was used to implement the publish/subscribe system and built a global network view. HyperFlow-based controllers operate more smoothly under heavy

load synchronization and kept minimal latency in comparison to NOX controllers. Also, HyperFlow could keep an acceptable amount of consistency among controllers for some 1000 arriving events per second that was 1000 events that include switch and host connecting and disconnecting the network and a link state change. Nevertheless, it imposed a strong requirement of consistent network-wide view in all controllers and this generated large control traffic.
Yeganeh and Ganjali, (2012) designed and implemented Kandoo, a distributed control plane for scaling and efficiently offloading control applications. In their work, they proposed two layers of controllers: Local controllers and a Root controller. The local controllers executed local applications (frequent events) and did not have knowledge of the network-wide state. While, the logically centralized root controller runs non-local applications (rare events) and maintained network-wide state. The local controllers controlled one or more switches while the root controller controlled all local controllers. The root controller loads were considerably lower during the experimental setup; the controller handled fewer events and did not query the Top of Rack (TOR) switches. Results about elephant flow detection problem were obtained, using different applications. This elephant flow was a large continuous flow over a network link that decreased the total bandwidth after a certain amount of time. The final result showed that Kandoo scales significantly better than a traditional OpenFlow network, while solving the elephant flow problem increasingly. The local controller scaled linearly with the size of the network and efficiently shielded the root controller from frequent events. However, the partial network- wide consistency and synchronization were not suitable for large and highly distributed networks such as WAN because each controller was required to distribute data to other controllers in the network.

Dixit et al., (2013) proposed ElastiCon, an elastic distributed controller architecture for dynamically adapting the controller resource pool to traffic conditions and shifting load across controllers. They achieve their objectives by designing algorithms for switch migration (migrating switches from the overloaded controller to lightly-loaded one), controller load balancing (monitoring and automatically balancing the load across controllers) and elasticity. The controller pool is scale up (down) if the aggregate traffic load is greater (smaller) than aggregate controller capacity. The switch migration algorithm is based on a 4-phase migration protocol, to ensure minimal disruption to ongoing flows during migration. ElastiCon is implemented by extending Floodlight and enhancing Mininet. Hazelcast was used to implement the distributed data store, for building global network view. It was noted that ElastiCon added controllers at 10,000 and 11,000 Packet-In messages per second and removes them at 9,000 and 7,000 Packet-In messages per second. The migration time increases marginally as the load on the controller increases. Also, the study shows that the load balancing via switch migration can improve the performance. The evaluation process also indicates that the switch migration process takes about 20ms, which proves the speed of the process. However, this research is more focus on load shifting, than Inter-controller communication. The centralized distributed data store does not scale well in large networks.
Lin et al., (2013) designed a high-performance mechanism called East-West Bridge (EWBridge), for heterogeneous NOSes (Network Operating Systems) to exchange network view in multi-domain networks. The EWBridge is enabled in all kinds of NOSes by adding three modules (Network Virtualization, East-West Bridge and LLDP extension). The EWBridge initiates the controller discovery process (for all controllers to learn the addresses of their peers), and controllers establish a virtual full mesh topology based on TCP/SSL. Messages are delivered for update by the publish/subscribe system and each

database stores the entire topology locally. EWBridge is implemented in two open-source NOSes: Floodlight and NOX. Two data centers are emulated using Mininet to show the functionality of EWBridge. Evaluation of EWBridge shows that; it is faster in data query and speed of network view updates than DHT (Distributed Hash Table). Nevertheless, EWBrdige focuses on enterprise, data center and intra-domain networks. It is not efficiently scalable for large networks,
Berde et al., (2014) developed an experimental system – Open Network Operating System (ONOS). ONOS adopts a distributed SDN control platform architecture. In their work; they propose two prototypes. Prototype 1 focused on implementing a global network view for scalability and fault-tolerance. Prototype 2 focused on improving performance. The network view has three components: a graph database (Titan), a key-value store (Cassandra), and a graph API to expose network state to the application layer (Blueprints). The results of the evaluation study of ONOS prototype 1 showed that ONOS can dynamically add switches, efficiently control hundreds of switches and hosts, and deal instantly with network failures. Prototype 2 addresses the issues in Prototype 1 such as excessive data store operations, which slows the network and the lack of notifications and messaging across nodes, which is essential for the proper communication between the controllers. Prototype 2 improves the performance of Prototype 1, while keeping the global network view consistent. A median latency response of 53.1ms and throughput of 18,832 paths/sec was achieved during the experiment. The target latency response (10 – 100ms) was met, but the target throughput was not (1M path/sec). But, ONOS is focused primarily on service provider networks, and does not take into consideration WAN requirements such as high availability support and network policies.
Krishnamurthy et al., (2014) proposed Pratyaastha as an efficient elastic distributed SDN control plane. A controller assignment algorithm was developed to efficiently assign state

partitions and switches to distributed controller instances by minimizing inter-controller communication to keep flow setup latencies low, and minimizing number of machines used to run controller instances to keep operating costs low. The controller assignment algorithm was implemented using the Optaplanner planning engine. Pratyaastha’s assignment algorithm and pooling technique help to avoid costly Remote Procedure Calls (RPCs) between controllers, when handling events from 80% of the switches (switches and state partitions assigned to same controller instance). The algorithm avoids overload by keeping the controller instance processing responsibilities within its CPU (Central Processing Unit) capacity. Pratyaastha gave a 33% and 42% decrease cost when compared with Local CPU + Memory and CPU only, respectively. Nevertheless, this work does not focus on control traffic and inter-controller communication needed for a WAN, such as high availability support, network policies, real-time monitoring and fine grained control.
Phemius et al., (2014) proposed DISCO, an extensible DIstributed SDN COntrol plane for WAN and overlay networks. DISCO was implemented on top of Floodlight OpenFlow Controller and the AMQP protocol. The DISCO controller is composed of two parts: Intra- domain and Inter-domain. The Intra-domain monitors the network and manages flow prioritization, while the Inter-domain manages communication with other DISCO controllers. An Extended Database in each controller is used to store network topology information from both domains. The inter-domain enables the exchange of aggregated network-wide information using Messenger and Agents. The AMQP protocol serves as a base for implementing the Messenger. The Messenger Module builds channels between neighboring controllers to share information. Each Agent publishes and consumes message through Messenger, to ensure consistency in the system. DISCO uses four main Agents (Connectivity, Monitoring, Reachability and Reservation Agent). A typical enterprise network with domain A, B and C were emulated using Mininet to evaluate

DISCO. The evaluation study of DISCO has shown that; after the Monitoring Agent discovers the failure, the Connectivity and the Reachability Modules take charge of failure recovery, working together with the Messenger. Also, DISCO can migrate a virtual machine, from one domain to another inside a DISCO architecture, with low latency and high reachability. But, network policies such as QoS (Quality of Service) and ACLs (Access Control Lists) were not considered during the experimental evaluation, preventing the real-time application of DISCO for WAN.
Fu et al., (2014) proposed ORION, a hybrid hierarchical control plane for large-scale networks. ORION architecture consists of two layers: Bottom layer and Top layer. The Bottom Layer (Area controller layer) is connected to physical switches, and responsible for intra-area topology and routing. The Top layer (Domain controller layer) treats area controllers as devices, and synchronizes the global abstracted network view through a distributed database. Communication between area controllers and domain controllers is established via TCP, which is used to send requests and distributed rules. Routing rules are distributed through the Publish/Subscribe Mechanism. Intra-area and Inter-area single- link failures are prevented with the fast reroute module. Other modules in ORION include device management, topology, routing, storage and vertical communication channel modules. ORION has made a theoretical and an experimental evaluation to test the performance of its control plane. The theoretical evaluation shows that the computing time of ORION has a linear growth, which is much lower than the traditional Dijkstra routing algorithm. The feasibility and effectiveness of Orion are verified with a prototype system built using Java, parts of the area controller were built using Floodlight Controller (which uses OpenFlow). The domain controllers do not use OpenFlow to communicate with the area controllers. ORION was run on a server with multiple virtual controllers, and Mininet was use to simulate the data plane. In the experimental evaluation; simulating 200 switches,

ORION single area controller handled 8114 new flows per second. Increasing the number of areas (controllers) in ORION; shows the overall flow setup rate of ORION is scalable with a gradual increase in delay time and low overhead. The fast reroute results for intra- and inter-area single link failure was acceptable. However, ORION focuses on a large scale intra-domain network and does not consider inter-domain communications. The distributed database provides a partial consistency and synchronization, which is not suitable for WAN.
Bilal et al., (2016) introduced a Distributed approach in the Multi-domain controllers architecture (DMC), which interconnects heterogeneous networks to form a WAN while preserving the privacy of their domains. DMC is implemented on top of the RYU control platform. DMC architecture and implementation is divided into 3 phase: the controller design based on events and connected via REST Interface, the routing module for computing intra- and inter-domain routes, and the monitoring module to ensure end-to- end connectivity between nodes in the case of link failure across domains. In experimenting DMC; the network is emulated using Mininet. The Mininet is hosted on a dedicated Virtual Machine (VM) and Controllers VMs are hosted on a single machine. LAN Segmentation is used to achieve a feel of WAN, and User terminals (hosts) are provided with 100Mbps links, to connect to the network domains. The Flow setup delay results obtained an average response time of 5.2 milliseconds, from the controller to the switch. The controller shares less than 1KB data with other controllers during packet exchange, decreasing overheads, enhancing scalability and resulting in a very smooth communication. The experiment gave a link recovery time of 1.5s, showing how the monitoring module senses and reacts to link failure, and computes an alternative route in minimal time. Nevertheless, DMC focuses more on the privacy of domains, and does not consider Inter-controller communication among WANs.

Benamrane et al., (2017) implemented and evaluated an East-West Interface called Communication Interface for Distributed Control Plane (CIDC), for communication between controllers in logically distributed SDN control plane architectures. Two Controllers were used; a cluster of OpenDaylight (ODL) controllers to build a logically centralized control plane and a modified adaptive Floodlight controller to support logically distributed control plane using CIDC. The CIDC Interface is used by each controller to synchronize its stats and services with its neighboring controllers; for inter-controller communication. Several communication modes (Notification, Service and Full) was used to customize the role of each controller in the network. The Interface was emulated with four different topologies (Gridnet, Claranet, Marwan and Hibernia Uk) obtained from Internet Topology Zoo, Each topology was implemented as a large ring WAN topology. The CIDC shares selected events to exchange based on modes, showing stable delay (does not exceed 4ms) upon addition of a number of connected domains (especially hosts and flows phase), while ODL peak 30ms or more. The necessary information is shared based on the desired mode, resulting in less system resource utilization when compared to ODL. However, Network policies such as QoS (Quality of Service) and ACLs (Access Control Lists) were not considered. And, high availability support across different controller modules was not considered.
In view of the limitations identified from the reviewed of works, it is evident that an East- West Interface is important in establishing communication in a large and highly distributed network, such as WAN. In order to achieve a scalable control plane in a logically distributed architecture; the interface must address the requirements of WAN environment such as global knowledge of network traffic and state (high availability support), real-time monitoring, decision making, policy updating and fine-grained control.

3.1 Introduction
[bookmark: _TOC_250028]
CHAPTER THREE MATERIALS AND METHODS

In this chapter, the methods, materials and procedures employed for the successful completion of this research are presented. This chapter detailed the steps of the methodology adopted in this research as highlighted in section 1.7.
3.2 [bookmark: _TOC_250027]Materials
The materials used in this research work are listed and discussed as follows:

3.2.1 [bookmark: _TOC_250026]Hardware
This research work was emulated on a 64-bit Windows 8 operating system, x64-based processor, Intel® Core ™ i5-3470 CPU @ 3.20GHz (4 logical cores) with 8.00GB RAM, and 500GB Hard disk.
3.2.2 [bookmark: _TOC_250025]VM Workstation Pro v12.0.1.3
The network environment used in this research work is emulated on a Virtual Machine (VM). Considering features such as faster speed, support for nested virtualization and easy integration with GNS3; VMware was selected as the choice of VM. The research was performed on VMware Workstation Pro v12.0.1.3. The VMware was installed on the 64- bit Windows operating system. Ubuntu 16.04 LTS was installed on the VM as the operating system for the network environment; with 1.5GB RAM, Java 1.7 (and above) and 2 cores of CPU. The installation steps/procedures of the VMware and Ubuntu 16.04 LTS is captured in Appendix A.
3.2.3 [bookmark: _TOC_250024]Floodlight Controller
Floodlight controller master version was installed on the Ubuntu VM as the controller for the network. This controller was the latest version as at the time of this research study. The controller was cloned from GitHub using Ubuntu Command-Line Interface (CLI). Eclipse

Oxygen 4.7 was installed for programming and launching the floodlight controller. The floodlight controller installation steps are shown in Appendix B.
3.2.4 [bookmark: _TOC_250023]Mininet
Mininet version 2.2 was installed on the Ubuntu VM using the CLI, with Open vSwitch

2.5.4. The Mininet is the software that does the actual emulation of the network on the VM. Steps for installing Mininet are found in Appendix C.
3.3 [bookmark: _TOC_250022]Methods
The methodology used to achieve the set objectives in this research work are presented and discussed clearly. The methodology adopted are as follows:
1. Emulation of the network environment on a virtual machine (VM) running Ubuntu

16.04 LTS necessary for the implementation of the East-West communication interface for distributed control plane (CIDC) developed by Benamrane et al., 2016. This is achieved using the following steps:
a. Install virtual machine (VM) running Ubuntu 16.04 LTS. Each VM represents an emulated WAN environment.
b. Install Floodlight Controller on each VM, to manage each WAN.

c. Download the network topology (Claranet) from Internet Topology Zoo, and convert from graph mL into a python script.
d. Configure the Claranet topology on each VM using Mininet.

e. Interconnect the emulated VMs using GNS3.

f. Set the link between switches and host to 1Gbps for the bandwidth and 30ms for the one-way delay.
g. Develop the CIDC using Eclipse Integrated Development Environment (IDE).

h. Inject traffic into the network using Iperf.

2. Develop the improved East-West Interface (mCIDC), using the following steps:

a. Repeat Step 1 (a) – (g).

b. Develop mCIDC using Eclipse IDE, floodlight services and dependencies.

c. Develop and configure network policies (Quality of Service and Access Control Lists) for each VM.
d. Repeat Step 1 (h).

3. Evaluate the performance of the mCIDC with CIDC:

a. Compare both mCIDC and CIDC using captured TCP packets, TCP errors and ICO, with no network policies.
b. Compare both mCIDC and CIDC using captured TCP packets, TCP errors and ICO, with network policies.
3.3.1 [bookmark: _TOC_250021]Claranet Network Topology
The research is carried out using standard network topology; obtained from Internet Topology Zoo. The Claranet topology which consists of fifteen (15) switches and fifteen
(15) hosts was used. The topology was obtained and converted from GraphML to python (.py) format using a parser. The parser was installed inside the Mininet directory as shown in Appendix D. The python script was modified to accept multiple controllers (Appendix D). Figure 3.1 shows the Claranet Network topology.

[image:]

[bookmark: _bookmark9]Figure 3.1: Claranet Network Topology (Benamrane et al., 2017)

3.3.2 Connection of VMs in Graphical Network Simulator 3 (GNS3)
The Ubuntu VM is cloned into three VMs (Ubuntu 1, Ubuntu 2 and Ubuntu 3) with each VM containing the network topology, Mininet, and floodlight controller. The VMs are emulated using GNS3 version 2.0.3. Each VM has two network adapters (one connected to the Custom adapter and the other Network Address Translation (NAT)). The GNS3 contains the Ethernet switch (Switch 1) that connects all the VMs. GNS3 is installed on the physical device (the Windows operating system). GNS3 installation is found in Appendix E. Figure 3.2 shows the connection of the VMs in GNS3.

[image: C:\Users\YoungAbdul\Videos\pix\GNS2 (2).png]

[bookmark: _bookmark10]Figure 3.2: GNS3 VMs Connection
3.3.3 [bookmark: _TOC_250020]CIDC Operation
The default modules and states such as forwarding, thread pool, topology manager, etc. are initialized on starting the controller. The Producer starts by reading the configuration to recognize the IP addresses of the remote consumers (Benamrane et al., 2017). The Producer notifies all remote consumers when new changes occur in its domain, and shares all events. After the Producer initializes the connections by sending a Hello message to the consumers, each consumer that responds and joins a list of connections. The channels are configured and ready for any new events from the Data-Collector. When changes occur (new events are detected), the Data-Collector sends network status to all connected Consumers to notify remote controllers that a local status has changed and to synchronize data between controllers. The Data-Updater receives external data from the Consumer and updates the system. The CIDC interface codes programmed using Eclipse Oxygen 4.7 is contained in Appendix F. Figure 3.3 shows a snippet of the CIDC codes.

[bookmark: _bookmark11]ScheduledExecutorService ses = threadPool.getScheduledExecutor(); mythread = new SingletonTask (ses,new Runnable() {
public void run() { try{
logger.info("Waiting 10 sec"); Thread.sleep(10000);
logger.info("Producer :: "+myConf.getMode()+" mode is configured"); producer();

}
catch(Exception e){
logger.error("Exception detected "+e.getMessage());
}
}
});
mythread.reschedule(1, TimeUnit.SECONDS);

}
public void producer() throws IOException{
// Configure the client.
bootstrap = new ClientBootstrap(new NioClientSocketChannelFactory(Executors.newCachedThreadPool(), Executors.newCachedThreadPool()));

Figure 3.3: Snippet of CIDC codes (Benamrane et al., 2017)

3.3.4 [bookmark: _TOC_250019]Modification of CIDC
The modification of the CIDC (mCIDC) is carried out using the floodlight ISyncService. The ISyncService synchronizes updates between controllers state by providing access to updates published by all other modules in the controller in an efficient manner. Figure 3.4 shows the flowchart for the mCIDC. The mCIDC codes are shown in Appendix G.

Applications
Start
Yes
New Rule
No
Producer

configuration
Treat Packets
initialize
DataUpdater
No
Connection
established
Yes
No
Yes
SSL
Process Handshake
for the first packet (Key creation) + Decrypt + Decode
Process Handshake for
the first packet (Pre – master secret and key creation) + Encode - Encrypt
Encode
No
Yes	SSL
Consumer 1
Consumer 2
Applications
Datacollector
Consumer 3
Stop
Decode
ISyncService
Channels ready
Wait for new Connections
Ignore

[bookmark: _bookmark12]Figure 3.4: Flowchart mCIDC
3.3.5 [bookmark: _TOC_250018]Information Exchange by ISyncService
The ISyncService allows the controllers to share and exchange state information. The Producer of the CIDC is linked with the floodlight ISyncService to share link discovery and topology information across every module in the controller, and with neighboring controllers. The link discovery and topology updates are store in the StoreLD and StoreTopo, respectively and is accessed by the controllers. Figure 3.5 shows a snippet of mCIDC code.

try {

Producer.syncService.registerStore("LDUpdates", Scope.GLOBAL); Producer.storeLD = Producer.syncService.getStoreClient("LDUpdates", String.class,

String.class);
Producer.storeLD.addStoreListener(this);
} catch (SyncException e) {
throw new FloodlightModuleException("Error while setting up sync service", e);
}
Producer.ldhaworker = new LDHAWorker(Producer.storeLD, controllerID); linkserv.addListener(Producer.ldhaworker); haworker.registerService("LDHAWorker", Producer.ldhaworker);

[bookmark: _bookmark13]Figure 3.5: Snippet of mCIDC codes

3.3.6 [bookmark: _TOC_250017]Development of Network Policies
Network policies are developed, configured and set on the different WAN. These policies are provided by Access Control Lists (ACLs) and simple Quality of Service (QoS) settings. Each VM (WAN) contains different network policies. Appendix H contains the network policies for this research work.
3.3.7 [bookmark: _TOC_250016]Experimental Description
The VMs are powered “ON” from the GNS3 interface, starting all three VMs. Each VM represents a WAN domain. Each domain controller is launched from eclipse using floodlight launch (Appendix I). The network topology in each domain is started using Mininet (from the CLI) as shown in Figure 3.6. OpenFlow 1.3 is used as the southbound protocol. After the successful establishment of OpenFlow connections between the nodes (hosts and switches) and the controllers, then new traffic is injected into the network using the Iperf tool, for a default time of 10 seconds. This is achieved by simulating a scenario

where switches must request their controller for new events processing, by fixing one of the emulated hosts as a server (host 14) and the remaining hosts as clients. New flow from the client passes through the switch; sending a packet-In message to its controller. The controller installs forwarding rule in the switch flow table. These operations result in network changes, causing the controller to synchronize with its neighboring controllers. Wireshark analyzer was used for network analysis. This experimental description is carried out on CIDC and mCIDC; without network policies (notification mode) and with network policies (full mode). The Experiment is carried out on the network topology as shown in Table 3.1. The modules in both CIDC and mCIDC are created using the steps in Appendix J.

[image: C:\Users\YoungAbdul\OneDrive\Music\Cidc\mininet start 1.png]
[bookmark: _bookmark14]Figure 3.6: Start Network Topology with Mininet

[bookmark: _bookmark15]Table 3.1: Evaluated Network Topology

	Topology
	Pseudo-name
	Domain
	Nodes per domain
	Nodes

	Claranet
	Claranet_2
	2
	15
	30

	Claranet
	Claranet_3
	3
	15
	45

3.3.8 [bookmark: _TOC_250015]Performance Evaluation
The performance metrics are combined with network policies to evaluate the performance of the controller in policy updating and decision making. The performance metrics include captured TCP packets, TCP errors and ICO. This performance metrics are used to compare the CIDC and mCIDC, with and without network policies. The percentage improvement from the performance of mCIDC over CIDC was obtained using equation (3.1).

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝐶𝐼𝐷𝐶 − 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑚𝐶𝐼𝐷𝐶 Parameter_CIDC

3.1

[bookmark: _TOC_250014]CHAPTER FOUR RESULTS AND DISCUSSION
4.1 [bookmark: _TOC_250013]Introduction
In this chapter, the results and discussion for the research work are presented. The performance of the CIDC and mCIDC are evaluated using the performance metrics as discussed in subsection 3.3.8. The performances with and without network policies are reported appropriately.
4.2 [bookmark: _TOC_250012]Experimental Connection
The connection of the floodlight controllers across the VMs launched inside Eclipse Floodlight Interface is shown in Figure 4.1.
[image: C:\Users\YoungAbdul\OneDrive\Music\Cidc\join3.png]

[bookmark: _bookmark16]Figure 4.1: Connection of Three controllers on Eclipse Floodlight Interface
4.3 [bookmark: _TOC_250011]Performance Analysis without Network Policies
This subsection reports the performance analysis for CIDC and mCIDC without network policies. Results for both CIDC and mCIDC interface are presented here.

4.3.1 Result Analysis of CIDC
The results for CIDC Claranet_2 and Claranet_3 network topology are presented in Table

4.1 and 4.2 respectively. Figures 4.2 and 4.3 show the plots of captured TCP packets against TCP errors for Claranet_2 and Claranet_3 respectively. It observed that as the number of packets increases, the TCP errors generated during transmission also increases. Also, the ICO decreases with an increase TCP errors.
[bookmark: _bookmark17]Table 4.1: Result Analysis of CIDC Claranet_2 without Network Policies

	S/N
	Captured TCP Packets
	TCP
Errors
	ICO
(Mbits/s)

	1
	10,156
	127
	97

	2
	10,466
	176
	87

	3
	10,685
	193
	79

	4
	10,693
	199
	77

	5
	10,700
	203
	74

	6
	10,928
	256
	70

	7
	11,178
	290
	65

	8
	11,182
	292
	65

	9
	11,381
	315
	61

	10
	11,541
	410
	59

[bookmark: _bookmark18]Table 4.2: Result Analysis of CIDC Claranet_3 without Network Policies

	S/N
	Captured TCP Packets
	TCP Errors
	ICO (Mbits/s)

	1
	13,409
	140
	155

	2
	13,590
	185
	149

	3
	13,603
	190
	145

	4
	14,062
	218
	136

	5
	14,153
	229
	130

	6
	14,400
	416
	124

	7
	14,408
	418
	123

	8
	14,466
	453
	112

	9
	14,572
	510
	103

	10
	14,804
	616
	92

[bookmark: _bookmark19]Figure 4.2: Plot of Captured TCP Packets against TCP Errors for CIDC Claranet_2 without Network PoliciesTCP Errors
450
400
350
300
250
200
150
100
50
0
11,800
11,600
11,400
11,200
11,000
10,800
10,600
10,400
10,200
10,000
Captured TCP Packets

Captured TCP Packets

[bookmark: _bookmark20]Figure 4.3: Plot of Captured TCP Packets against TCP Errors for CIDC Claranet_3 without Network Policies15,000
14,800
14,600
14,400
14,200
14,000
13,800
13,600
13,400
13,200
0
100
200
300
400
500
600
700
TCP Errors

Figures 4.4 and 4.5 show the plots of ICO against TCP Errors for Claranet_2 and Claranet_3, respectively. It can be seen that as the number of TCP Errors increases, the ICO decreases due to congestion of the TCP window (pipe).TCP Errors
450
400
350
300
250
200
150
100
50
0
120

100

80

60

40

20

0
ICO (Mbits/s)

[bookmark: _bookmark21]Figure 4.4: Plot of ICO against TCP Errors for CIDC Claranet_2 without Network Policies

ICO (Mbits/s)

[bookmark: _bookmark22]Figure 4.5: Plot of ICO against TCP Errors for CIDC Claranet_3 without Network Policies180
160
140
120
100
80
60
40
20
0
0
100
200
300
400
500
600
700
TCP Errors

4.3.2 Result Analysis for mCIDC
[bookmark: _bookmark23]The results for mCIDC Claranet_2 and Claranet_3 network topology are presented in Table 4.3 and 4.4 respectively. Figures 4.6 and 4.7 show the plot of captured TCP packets against TCP errors for Claranet_2 and Claranet_3, respectively. It is observed that as the number of packets increases, the TCP errors generated during transmission also increases.
Table 4.3: Result Analysis of mCIDC Claranet_2 without Network Policies

	S/N
	Captured TCP Packets
	TCP Errors
	ICO (Mbits/s)

	1
	7,527
	81
	77

	2
	7,594
	101
	74

	3
	7,607
	107
	72

	4
	7,656
	134
	67

	5
	7,864
	187
	60

	6
	7,911
	202
	56

	7
	8,018
	233
	52

	8
	8,541
	288
	48

	9
	8,559
	297
	46

	10
	8,709
	395
	40

[bookmark: _bookmark24]Table 4.4: Result Analysis of mCIDC Claranet_3 without Network Policies

	S/N
	Captured TCP Packets
	TCP Errors
	ICO (Mbits/s)

	1
	11,127
	104
	123

	2
	11,569
	187
	110

	3
	11,599
	206
	104

	4
	11,604
	208
	102

	5
	11,704
	241
	95

	6
	11,738
	276
	89

	7
	12,090
	287
	75

	8
	12,320
	353
	70

	9
	12,538
	373
	66

	10
	12,800
	416
	61

Captured TCP Packets

[bookmark: _bookmark25]Figure 4.6: Plot of Captured TCP Packets against TCP Errors for mCIDC Claranet_2 without Network PoliciesTCP Errors
450
400
350
300
250
200
150
100
50
0
8,800

8,600

8,400

8,200

8,000

7,800

7,600

7,400
13,000
12,800
12,600
12,400
12,200
12,000
11,800
11,600
11,400
11,200
11,000
0
50
100
150
200
250
300
350
400
450
TCP Errors
Captured TCP Packets

[bookmark: _bookmark26]Figure 4.7: Plot of Captured TCP Packets against TCP Errors for mCIDC Claranet_3 without Network Policies
Figures 4.8 and 4.9 show the plots of ICO against TCP errors for Claranet_2 and Claranet_3, respectively. It is observed that as the number of TCP errors increases, the ICO decreases due to congestion of the TCP window.

ICO (Mbits/s)

[bookmark: _bookmark27]Figure 4.8: Plot of ICO against TCP Errors for mCIDC Claranet_2 without Network PoliciesTCP Errors
450
400
350
300
250
200
150
100
50
0
90
80
70
60
50
40
30
20
10
0
140
120
100
80
60
40
20
0
0
50
100
150
200
250
300
350
400
450
TCP Errors
ICO (Mbits/s)

[bookmark: _bookmark28]Figure 4.9: Plot of ICO against TCP Errors for mCIDC Claranet_3 without Network Policies
4.4 [bookmark: _TOC_250010]Performance Analysis with Network Policies
This subsection reports the performance analysis for CIDC and mCIDC with network policies. Results for both CIDC and mCIDC interface are presented here.

4.4.1 [bookmark: _bookmark30]Result Analysis of CIDC
The results for CIDC Claranet_2 and Claranet_3 network topology are presented in Table

4.5 and 4.6 respectively. Figures 4.10 and 4.11 show the plot of captured TCP packets against TCP errors for Claranet_2 and Claranet_3, respectively. It is observed that as the number of packets increases, the TCP errors generated during transmission also increases.
[bookmark: _bookmark29]Table 4.5: Result Analysis of CIDC Claranet_2 with Network Policies

	S/N
	Captured TCP Packets
	TCP Errors
	ICO (Mbits/s)

	1
	16,271
	483
	225

	2
	16,347
	518
	213

	3
	16,441
	578
	207

	4
	16,553
	616
	200

	5
	16,583
	642
	196

	6
	16,620
	669
	191

	7
	16,724
	705
	184

	8
	16,729
	709
	182

	9
	16,732
	711
	181

	10
	16,764
	729
	175

Table 4.6: Result Analysis of CIDC Claranet_3 with Network Policies

	S/N
	Captured TCP Packets
	TCP Errors
	ICO (Mbits/s)

	1
	19,332
	729
	284

	2
	20,244
	857
	269

	3
	20,304
	905
	262

	4
	20,318
	911
	260

	5
	20,354
	934
	256

	6
	20,528
	969
	248

	7
	20,721
	999
	240

	8
	20,890
	1145
	223

	9
	20,954
	1193
	215

	10
	20,971
	1205
	210

[bookmark: _bookmark31]Figure 4.10: Plot of Captured TCP Packets against TCP Errors for CIDC Claranet_2 with Network Policies16,800

16,700

16,600

16,500

16,400

16,300

16,200
0
100
200
300	400	500
TCP Errors
600
700
800
Captured TCP Packets

Captured TCP Packets

[bookmark: _bookmark32]Figure 4.11: Plot of Captured TCP Packets against TCP Errors for CIDC Claranet_3 with Network Policies21,200
21,000
20,800
20,600
20,400
20,200
20,000
19,800
19,600
19,400
19,200
0
200
400
600
800
1000
1200
1400
TCP Errors

Figures 4.12 and 4.13 show the plots of ICO against TCP Errors for Claranet_2 and Claranet_3, respectively. It can be seen that as the number of TCP Errors increases, the ICO decreases due to congestion of the TCP window.800
700
600
300	400	500
TCP Errors
200
100
0
0
50
100
150
200
250
ICO (Mbits/s)

[bookmark: _bookmark33]Figure 4.12: Plot of ICO against TCP Errors for CIDC Claranet_2 with Network Policies

ICO (Mbits/s)

[bookmark: _bookmark35][bookmark: _bookmark34]Figure 4.13: Plot of ICO against TCP Errors for CIDC Claranet_3 with Network PoliciesTCP Errors
1400
1200
1000
800
600
400
200
0
300

250

200

150

100

50

0

4.4.2 Result Analysis of mCIDC
The results for mCIDC Claranet_2 and Claranet_3 network topology are presented in Table 4.7 and 4.8 respectively. Figures 4.14 and 4.15 show the plot of captured TCP packets against TCP errors for Claranet_2 and Claranet_3, respectively. It is observed that as the number of packets increases, the TCP errors generated during transmission also increases.

Table 4.7: Result Analysis of mCIDC Claranet_2 with Network Policies

	S/N
	Captured TCP Packets
	TCP Errors
	ICO (Mbits/s)

	1
	13,099
	310
	148

	2
	13,147
	348
	142

	3
	13,521
	417
	130

	4
	13,640
	453
	122

	5
	13,707
	483
	115

	6
	13,946
	511
	102

	7
	14,335
	642
	89

	8
	14,381
	669
	80

	9
	14,386
	672
	78

	10
	14,505
	750
	69

[bookmark: _bookmark36]Table 4.8: Result Analysis of mCIDC Claranet_3 with Network Policies

	S/N
	Captured TCP Packets
	TCP Errors
	ICO (Mbits/s)

	1
	16,271
	481
	225

	2
	16,845
	569
	213

	3
	16,935
	578
	211

	4
	16,959
	598
	206

	5
	17,003
	629
	198

	6
	17,340
	687
	190

	7
	17,794
	783
	177

	8
	17,841
	817
	169

	9
	17,911
	859
	160

	10
	17,983
	911
	151

Captured TCP Packets

[bookmark: _bookmark37]Figure 4.14: Plot of Captured TCP Packets against TCP Errors for mCIDC Claranet_2 with Network Policies14,600
14,400
14,200
14,000
13,800
13,600
13,400
13,200
13,000
0
100
200
300	400	500
TCP Errors
600
700
800
18,200
18,000
17,800
17,600
17,400
17,200
17,000
16,800
16,600
16,400
16,200
16,000
0
200
400
600
800
1000
TCP Errors
Captured TCP Packets

[bookmark: _bookmark38]Figure 4.15: Plot of Captured TCP Packets against TCP Errors for mCIDC Claranet_3 with Network Policies
Figures 4.16 and 4.17 show the plots of ICO against TCP errors for Claranet_2 and Claranet_3, respectively. It is observed that as the number of TCP errors increases, the ICO decreases due to congestion of the TCP window.

ICO (Mbits/s)

[bookmark: _bookmark39]Figure 4.16: Plot of ICO against TCP Errors for mCIDC Claranet_2 with Network Policies160
140
120
100
80
60
40
20
0
0
100
200
300
400	500
TCP Errors
600
700
800
TCP Errors
1000
800
600
400
200
0
0
50
100
150
200
250
ICO (Mbits/s)

[bookmark: _bookmark40]Figure 4.17: Plot of ICO against TCP Errors for mCIDC Claranet_3 with Network Policies
4.5 [bookmark: _TOC_250009]Performance Percentage Improvement of mCIDC over CIDC
The performance improvement of mCIDC over CIDC is determined by taking the average results of each performance metrics for both Claranet_2 and Claranet_3 network topology. The performance improvements are evaluated using equation (3.1).

4.5.1 [bookmark: _TOC_250008]Comparison of CIDC and mCIDC without Network Policies
The plots obtained from the analysis of CIDC and mCIDC are compared using Figures 4.2 to 4.9 and Tables 4.1 to 4.4. Table 4.9 shows the performance improvement of mCIDC over CIDC without network policies.
[bookmark: _bookmark41]Table 4.9: Performance Improvement of mCIDC over CIDC without Network Policies

	Performance Metrics
	Claranet_2
	Claranet_3

	
	CIDC
	mCIDC
	Percentage Improvement
(%)
	CIDC
	mCIDC
	Percentage Improvement
(%)

	Average Captured
TCP Packets
	10,891
	7999
	26.55
	14,147
	11,909
	15.82

	Average

TCP Errors
	246
	202
	17.89
	338
	265
	21.60

	Average

ICO
	73.4
	59.2
	19.35
	126.5
	89.5
	29.25

It is observed that without network policies, the percentage improvement of mCIDC over CIDC for Claranet _2 are 26.55%, 17.89%, and 19.35% for captured TCP packets, TCP errors and ICO respectively. While for Claranet_3, improvements are 15.82%, 21.60%, and 29.25% for captured TCP packets, TCP errors and ICO, respectively. This shows that mCIDC transmits the required necessary information between controllers with reduced TCP errors and ICO.

4.5.2 [bookmark: _TOC_250007]Comparison of CIDC and mCIDC with Network Policies
The plots obtained from the analysis of CIDC and mCIDC are compared using Figures

4.10 to 4.17 and Tables 4.5 to 4.8. Table 4.10 shows the performance improvement of mCIDC over CIDC with network policies.
[bookmark: _bookmark42]Table 4.10: Performance Improvement of mCIDC over CIDC with Network Policies

	Performance Metrics
	Claranet_2
	Claranet_3

	
	CIDC
	mCIDC
	Percentage Improvement
(%)
	CIDC
	mCIDC
	Percentage Improvement
(%)

	Average Captured
TCP Packets
	16,576
	13,867
	16.34
	20,462
	17,288
	15.51

	Average

TCP Errors
	636
	523
	17.77
	985
	691
	29.85

	Average

ICO
	195.4
	107.5
	44.99
	246.7
	190
	22.98

It is observed that with network policies, the percentage improvement of mCIDC over CIDC for Claranet _2 are 16.34%, 17.77%, and 44.99% for captured TCP packets, TCP errors and ICO, respectively. While for Claranet_3, improvements are 15.51%, 29.85%, and 22.98% for captured TCP packets, TCP errors and ICO, respectively. This shows that the mCIDC transmits the required information (reduced captured TCP packets) between neighboring controllers with reduced TCP errors and ICO.

[bookmark: _TOC_250006]CHAPTER FIVE CONCLUSION AND RECOMMENDATIONS
5.1 [bookmark: _TOC_250005]Summary
The East-West interface is very important in large networks or multi-domain networks with multiple controllers (such as WAN). The main purpose of East –West interface was to synchronize states for high availability, by enabling communication between groups or federations of controllers. This was achieved through monitoring /notification capabilities and exchange of data between controllers. The CIDC was developed to provide common compatibility and interoperability between different floodlight controllers, in a distributed control plane network (WAN network). The CIDC did not synchronize with all the modules of the floodlight controller, leading to inadequate consistent high availability and inefficient policy updates among controllers. In order to overcome this problem, the mCIDC with ISyncService was developed. The ISyncService provided high availability by synchronizing states among different modules in the controller and across different controllers in the WAN. The synchronized states included link discovery and topology. The CIDC and mCIDC were developed on an Ubuntu 16.04 LTS VM using Eclipse Oxygen 4.7. Analyses were carried out on the performance of the CIDC and mCIDC using the following performance metrics: captured TCP packets, TCP errors and ICO. The performance metrics were evaluated with and without network policies. The results indicated that for Claranet_2, the performance of mCIDC in minimizing number of captured TCP packets, TCP errors and ICO was better than CIDC by 36.16%, 21.78%, and 23.99% respectively. While for Claranet_3, the performance of mCIDC was better than CIDC by 18.79%, 27.55%, and 41.34% for captured TCP packets, TCP errors and ICO, respectively. For network policies with Claranet_2, mCIDC indicated better performance than CIDC in minimizing captured TCP packets, TCP errors and ICO by 19.54%, 21.61%,

and 18.17%, respectively. While network policies with Claranet_3, the mCIDC was better by 18.36%, 42.55%, and 29.84% for captured TCP packets, TCP errors and ICO, respectively.
5.2 [bookmark: _TOC_250004]Conclusion
The research developed the mCIDC with ISyncService for consistent high availability among controllers by minimizing number of TCP packets, TCP errors, and ICO needed for communication among multiple controllers in a WAN. This also helps to improve policy updating and decision making in the network. The comparisons of the performance of mCIDC and CIDC were carried out for captured TCP packets, TCP errors and ICO. The mCIDC outperformed the CIDC in all the metrics.
5.3 [bookmark: _TOC_250003]Limitation
The research work was unable to prevent the Open vSwitch from disconnecting and connecting during transmission among controllers. Hence, there was the need to run ten experiments per scenario, for accurate measurements.
5.4 [bookmark: _TOC_250002]Significant Contributions
A lot of research work has been done on improving East-West communication in a distributed control plane but most are focus on enterprise and intra-domain networks. The significant contributions of this research work are as follows:
a) Development of a mCIDC with ISyncService for communication in multiple WANs, while providing high availability and improved policy updating and decision-making.
b) The developed mCIDC showed a performance improvement without network policies over CIDC with Claranet_2 having a 26.55%, 17.89% and 19.35% for captured TCP packets, TCP errors and ICO. While for Claranet_3, improvements

were 15.82%, 21.60%, and 29.25% for captured TCP packets, TCP errors and ICO, respectively. Also, a performance improvement with network policies for Claranet_2; were 16.34%, 17.77%, and 44.99% for captured TCP packets, TCP errors and ICO. While for Claranet_3, improvements were 15.51%, 29.85%, and 22.98% for captured TCP packets, TCP errors and ICO, respectively.
5.5 [bookmark: _TOC_250001]Recommendations for Further Work
The following possible areas of further work are recommended for consideration for future research:
a) The application of the developed controller on a real network with multiple WANs to determine its scalability when other WAN parameters are considered.
b) The research only considered link discovery and topology for synchronization states, more states can be synchronized in further works.

[bookmark: _TOC_250000]REFERENCES
Benamrane Fouad, Ben Mamoun Mouad & Benaini Redouane (2017). An East-West interface for distributed SDN control plane: Implementation and evaluation. Computers and Electrical Engineering, 57, 162-175.
http://dx.doi.org/10.1016/j.compeleceng.2016.09.012
Berde P., Gerola M., Hart J., Higuchi Y., Kobayashi M., Koide T., Lantz B., O’Connor B., Radoslavov P., Snow W., & Parulkar G. (2014). ONOS: towards an open, distributed SDN OS. Paper presented at the Proceedings of the third workshop on hot topics in software defined networking, (pp. 1-6) ACM.
Bilal S., Shieh M., Tung L., & Paul Lin B. (2016). DMC: Distributed Approach in Multi- Domain Controllers. Proceedings of the Eleventh International Network Conference (INC), pp. 31-36.

Blial O., Ben Mamoun M., & Benaini R. (2016). An Overview on SDN Architectures with Multiple Controllers. Journal of Computer Networks and Communications, Article ID 9396525, 8 pages, http://dx.doi.org/10.1155/2016/9396525

Chen J., Zheng X., & Rong C. (2015). Survey on Software Defined Networking. In: Qiang W., Zheng X., Hsu CH. (eds) Cloud Computing and Big Data. Lecture Notes in Computer Science, vol 9, pg 106. Springer, Cham.

Dixit A., Hao F., Mukherjee S., Lakshman T., & Kompella R. (2013). Towards an elastic distributed SDN controller. Paper presented at the ACM SIGCOMM Computer Communication Review (vol. 43, No.4, pp. 7-12). ACM.

Egilmez H. E. (2014). Distributed QoS architectures for multimedia streaming over software defined networks. IEEE Transactions on Multimedia, 16(6), 1597-1609

Farhady H., Lee H., & Nakao A. (2015). Software-Defined Networking: A survey.
Computer Networks, 81, 79-95. http://dx.doi.org/10.1016/j.comnet.2015.02.014

Feamster N., Rexford J., & Zegura E. (2013). The road to SDN: An Intellectual History of Programmable Networks. ACM SIGCOMM Computer Communication Review, 44(2), 87-98.

Fu Y., Bi J., Chen Z., Gao K., Zhang B., Chen G., & Wu J. (2015). A Hybrid Hierarchical Control Plane for Flow-Based Large-Scale Software-Defined Networks. IEEE Transactions on Network and Service Management, 12(2), 117-131.

Jain S.,, Kumar A., Mandal S., Ong J., Poutievski L., Singh A., Venkata S., Wanderer J., Zhou J., Zhu M., Zolla J., Hölzle U., Stuart S., & Vahdat A. (2013). B4:

Experience with a Globally-Deployed Software Defined WAN. In ACM SIGCOMM Computer Communication Review (vol. 43, No.4, pp. 3-14).

Jammal M., Singh T., Shami A., Asal R., & Li Y. (2014). Software defined networking: State of the art and research challenges. Computer Networks, 72, 74-98. doi: http://dx.doi.org/10.1016/j.comnet.2014.07.004

Jarraya Y., Madi T., & Debbabi M. (2014). A Survey and a Layered Taxonomy of Software-Defined Networking. Communications Surveys &Tutorials, IEEE, 16(4), 1955-1980. doi: 10.1109/COMST.2014.2320094

Jarschel M., Zinner T., HoQfeld T., Tran-Gia P., & Kellerer W. (2014). Interfaces, attributes, use cases: A compass for SDN. IEEE Commun. Mag., vol. 52, no. 6, pp. 210–217.

Koponen T., Casado M., Gude N., Stribling J., Poutievski L., Zhu M., Ramanathan R., Iwata Y., Inuoe H., Hama T., & Shenker S. (2010). Onix: A Distributed Control Platform for Largescale Production Networks. Paper presented at Proceedings of the 9th USENIX conference on operating systems design and implementation (OSDI10); p. 1–6.

Kreutz D., Ramos F., & Verissimo P. (2013). Towards Secure and Dependable Software- Defined Networks. In Proceedings of the second ACM SIGCOMM Workshop on Hot Topics in software defined networking (pp. 55-60). ACM.

Kreutz D., Ramos F. M. V., Esteves Verissimo P., Esteve Rothenberg C., Azodolmolky S., & Uhlig S. (2015). Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE, 103(1), 14-76. doi: 10.1109/JPROC.2014.2371999

Krishnamurthy A., Chandrabose S. P., & Gember-Jacobson A. (2014). Pratyaastha: an efficient elastic distributed SDN control plane. Paper presented at the Proceedings of the third workshop on hot topics in software defined networking, Chicago, Illinois, USA. http://dl.acm.org/citation.cfm?doid=2620728.2620748.

Lantz B., Heller B., & McKeown N. (2010). A network in a laptop: rapid prototyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, (p. 19). ACM.

Levin D., Wundsam A., Heller B., Handigol N., & Feldmann A. (2012). Logically centralized? State distribution trade-offs in software defined networks,” in: Proceedings of ACM on Hot Topics in Software Defined Networking (HotSDN) Helsinki, Finland.

Lin P., Bi J., and Wang Y. (2013). East-West Bridge for SDN network peering. Frontiers in internet technologies Springer Berlin Heidelberg; p.170–81.

Masoudi Rahim and Ghaffari Ali (2016). Software defined networks: A survey. Journal of	Network	and	Computer	Applications,	67,	1-25.
http://dx.doi.org/10.1016/j.jnca.2016.03.016

Mckeown, N., Anderson, T., Balakrishnan, H.,Parulkar, G., Peterson, L., Rexford, J., Shenker, S., And Turner, J. (2008). OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM CCR 38, 2, 69–74.

Nunes B. A. A., Nguyen X.-N., Turletti T., Mendonca M., & Obraczka K. (2014). A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys and Tutorials, 16(3), 1617-1634. doi: 10.1109/SURV.2014.012214.00180

Oktian Y., Lee S., Lee H., & Lam J. (2017). Distributed SDN Controller System: A Survey on Design Choice. Computer Networks, 121, 100-111. doi: 10.1016/j.comnet.2017.04.038.

Open Networking Foundation (ONF), ‘‘SDN architecture,’’ Jun. 2014. [Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/ technical-reports/TR_SDN_ARCH_1.0_6062014.pdf

Phemius K., Bouet M., & Leguay J. (2014). Disco: Distributed Multi-Domain SDN Controllers. Network operations and management symposium (NOMS) IEEE; p.1– 4.

Ryan Wallner & Robert Cannistra (2013). An SDN approach: Quality of Service using Big Switch’s Floodlight Open-source Controller. in Proceedings of the Asia- Pacific Advanced Network, Vol. 35, pp. 14-19. doi:http://dx.doi.org/10.7125/APAN.35.2

Shuhao Liu & Baochun Li (2015). On Scaling Software-Defined Networking in Wide- Area Networks. Tsinghua Science and Technology, ISSN 1007-0214 01/10, pp. 221-232, Vol. 20, No. 3.

Stancu A., Halunga S., Vulpe A., Suciu G., Fratu O., & Popovici E. (2015). A Comparison between Several Software Defined Networking Controllers.	in Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), 12th International Conference.

Tootoonchian A. & Ganjali Y. (2010). HyperFlow: a distributed control plane for OpenFlow. Proceedings of the 2010 internet network management conference on research on enterprise networking, (p. 3-3).

Vijay Poonam & Vasudevan Deepika (2016). The Northbound APIs of Software Defined Networks. International Journal of Engineering Sciences & Research Technology (IJSERT) ISSN: 2277-9655.

Wibowo F., Gregory M., Ahmed K., & Gomez K. (2017). Multi-Domain Software Defined Networking: Research Status and Challenges. Journal of Network and Computer Applications, 87, 32-45. http://dx.doi.org/10.1016/j.jnca.2017.03.004

Xia W., Wen Y., Foh C., Niyato D., & Xie H. (2015). A Survey on Software-Defined Networking. IEEE Communications Surveys & Tutorials, 17(1), 27-51. doi: 10.1109/COMST.2014.2330903.

Xie J., Guo D., Hu Z., Qu T., & Lv P (2015). Control plane of software defined networks: A	survey.	Computer	Communications,	67,	1-10.
http://dx.doi.org/10.1016/j.comcom.2015.06.004

Yeganeh S. H. & Ganjali Y., (2012). Kandoo: A Framework for Efficient and Scalable Offloading of Control Applications. Proc. HotSDN ’12 Wksp., pp. 19–24.

Yin H., Xie H., Tsou T., Lopez D., Aranda P., & Sidi R. (2012). SDNi: A Message Exchange Protocol for Software Defined Networks (SDNs) across Multiple Domains. from https://datatracker.ietf.org/doc/draft-yin-sdn-sdni/

APPENDICES APPENDIX A
Installation of VMware Workstation 12 Pro Steps
1. Download the VMware workstation from VMware, and double click on it.
2. Accept the License Agreement and click Next to continue.
3. Choose the installation path where you want to install. Click Next to continue Note: You can also install feature Enhanced Keyboard Driver by checking box.
4. You can check additional options and Click Next to continue.
5. Choose where you want to create the shortcut and Click Next to continue.
6. Click Install to start the installation process.
7. After Installation; click on the License to install the License or Click Finish.
8. On Clicking the License; insert the License Key or choose I want to try VMware Workstation for 30 days. Enter your email address and Click Next to continue.
9. Then Click Finish to close the installer.

Installation of Ubuntu 16.04 LTS Steps
1. Download Ubuntu 16.04 LTS desktop image.
2. Open VMware Workstation 12 Pro.
3. Launch VMware Workstation New Virtual Machine (VM) installation wizard.
4. On the New Virtual Machine Wizard box, select Typical (default option) and click Next.
5. Select the installation media or source by browsing to the downloaded Ubuntu ISO file, and click Next.
6. Enter your details in the personalize Linux dialog box. This includes Name, Username and password (your Ubuntu login credentials).
7. Enter the VM Name and Location.
8. Specify disk capacity
9. On the ready to create VM dialog box; click on Customize Hardware (Memory, Network Adapters and Other devices) or leave them as defaults.
10. Check the box Power on the VM after creation. Else, Power on the VM manually.
11. Ubuntu OS installation Starts – Enter username and password to login.

APPENDIX B
Floodlight Controller Installation
The following steps where used to install floodlight controller:
1. Open Ubuntu CLI (ALT+CTRL+T).
2. Install dependencies for Floodlight Master:
$ sudo apt-get install build-essential ant maven python-dev
3. Install git: $ sudo apt install git
4. Install Floodlight from github with the following commands (sequentially):
$ git clone git://github.com/floodlight/floodlight.git
$ cd floodlight
$ git submodule init
$ git submodule update
$ ant
Note: Floodlight can be run on the terminal (CLI): $ java –jar target/floodlight.jar Floodlight can be developed in eclipse: by manually starting eclipse or running on the CLI
$ ant eclipse

APPENDIX C
Mininet Installation
The following steps were used to install Mininet from the CLI:
1. Open the Ubuntu VM CLI.
2. sudo apt-get install Mininet
3. sudo mn –c
4. sudo apt-get install git
5. git clone git://github.com/mininet/mininet
6. cd mininet
7. git tag (this displays the available versions of Mininet)
8. git checkout –b version (replace version with the selected version i.e. 2.2)
9. cd
10. mininet/util/install.sh –a
11. sudo mn

APPENDIX D
Importing Network Topology
These are the steps for importing the network topology from Internet Topology Zoo, and converting it to python (.py) format:
1. Open the CLI
2. cd mininet
3. git clone https://github.com/uniba-ktr/assessing-mininet.git
4. cd assessing-mininet/parser
5. wget http://topology-zoo.org/files/Claranet.graphml (to import the topology)
6. ./GraphML-Topo-to-Mininet-Network-Generator.py	–f	Claranet.graphml	–o Claranet.py (to convert to .py format)

Modified Claranet python Script
#!/usr/bin/python """
Custom topology for Mininet, generated by GraphML-Topo-to-Mininet-Network- Generator.
"""
from mininet.topo import Topo from mininet.net import Mininet
from mininet.node import RemoteController, Controller from mininet.node import Node, OVSSwitch
from mininet.node import CPULimitedHost from mininet.link import TCLink, Intf
from mininet.cli import CLI
from mininet.log import setLogLevel
from mininet.util import dumpNodeConnections

class GeneratedTopo(Topo): "Internet Topology Zoo Specimen."

def init (self, **opts): "Create a topology."
Initialize Topology
Topo. init (self, **opts) # add nodes, switches first...
Faro = self.addSwitch('s0', cls= OVSSwitch, protocols= OpenFlow13) Madrid = self.addSwitch('s1', cls= OVSSwitch, protocols= OpenFlow13) Porto = self.addSwitch('s2', cls= OVSSwitch, protocols= OpenFlow13) Lisbon = self.addSwitch('s3', cls= OVSSwitch, protocols= OpenFlow13) Barcelona = self.addSwitch('s4', cls= OVSSwitch, protocols= OpenFlow13) Manchester = self.addSwitch('s5', cls= OVSSwitch, protocols= OpenFlow13) NewYork = self.addSwitch('s6', cls= OVSSwitch, protocols= OpenFlow13) Amsterdam = self.addSwitch('s7', cls= OVSSwitch, protocols= OpenFlow13) Eindhoven = self.addSwitch('s8', cls= OVSSwitch, protocols= OpenFlow13) Berlin = self.addSwitch('s9', cls= OVSSwitch, protocols= OpenFlow13) Frankfurt = self.addSwitch('s10', cls= OVSSwitch, protocols= OpenFlow13) Munich = self.addSwitch('s11', cls= OVSSwitch, protocols= OpenFlow13) Paris = self.addSwitch('s12', cls= OVSSwitch, protocols= OpenFlow13) Rennes = self.addSwitch('s13', cls= OVSSwitch, protocols= OpenFlow13) London = self.addSwitch('s14', cls= OVSSwitch, protocols= OpenFlow13)
... and now hosts
Faro_host = self.addHost('h0') Madrid_host = self.addHost('h1') Porto_host = self.addHost('h2') Lisbon_host = self.addHost('h3') Barcelona_host = self.addHost('h4') Manchester_host = self.addHost('h5')

NewYork_host = self.addHost('h6') Amsterdam_host = self.addHost('h7') Eindhoven_host = self.addHost('h8') Berlin_host = self.addHost('h9') Frankfurt_host = self.addHost('h10') Munich_host = self.addHost('h11') Paris_host = self.addHost('h12') Rennes_host = self.addHost('h13') London_host = self.addHost('h14')
add edges between switch and corresponding host self.addLink(Faro , Faro_host)
self.addLink(Madrid , Madrid_host) self.addLink(Porto , Porto_host) self.addLink(Lisbon , Lisbon_host) self.addLink(Barcelona , Barcelona_host) self.addLink(Manchester , Manchester_host) self.addLink(NewYork , NewYork_host) self.addLink(Amsterdam , Amsterdam_host) self.addLink(Eindhoven , Eindhoven_host) self.addLink(Berlin , Berlin_host) self.addLink(Frankfurt , Frankfurt_host) self.addLink(Munich , Munich_host) self.addLink(Paris , Paris_host) self.addLink(Rennes , Rennes_host) self.addLink(London , London_host)

add edges between switches

self.addLink(Faro , Lisbon, bw=10, delay='30ms') self.addLink(Madrid , Lisbon, bw=10, delay='30ms') self.addLink(Madrid , Barcelona, bw=10, delay='30ms') self.addLink(Porto , Lisbon, bw=10, delay='30ms') self.addLink(Lisbon , London, bw=10, delay='30ms') self.addLink(Barcelona , Paris, bw=10, delay='30ms') self.addLink(Manchester , London, bw=10, delay='30ms') self.addLink(NewYork , London, bw=10, delay='30ms') self.addLink(Amsterdam , Eindhoven, bw=10, delay='30ms') self.addLink(Amsterdam , Frankfurt, bw=10, delay='30ms') self.addLink(Amsterdam , London, bw=10, delay='30ms') self.addLink(Berlin , Frankfurt, bw=10, delay='30ms') self.addLink(Berlin , Munich, bw=10, delay='30ms') self.addLink(Frankfurt , Munich, bw=10, delay='30ms') self.addLink(Frankfurt , Paris, bw=10, delay='30ms') self.addLink(Frankfurt , London, bw=10, delay='30ms') self.addLink(Paris , Rennes, bw=10, delay='30ms') self.addLink(Paris , London, bw=10, delay='30ms')
topos = { 'generated': (lambda: GeneratedTopo()) }
HERE THE CODE DEFINITION OF THE TOPOLOGY ENDS
the following code produces an executable script working with a remote controller # and providing ssh access to the the mininet hosts from within the ubuntu vm c1_ip= '192.168.118.129'
c2_ip= '192.168.118.133'
c3_ip= '192.168.118.131'

def myNetwork():

"Create network and run simple performance test" topo = GeneratedTopo()
net	=	Mininet(topo=topo,	controller=	None,	switch=OVSSwitch, host=CPULimitedHost, link=TCLink, autoSetMacs=True)
#Add SDN Controllers to the network
c1 = net.addController ('c1',controller=RemoteController, ip= c1_ip, port=6653) c2 = net.addController ('c2',controller=RemoteController, ip= c2_ip, port=6653) c3 = net.addController ('c3',controller=RemoteController, ip= c3_ip, port=6653) return net

def connectToRootNS(network, switch, ip, prefixLen, routes): "Connect hosts to root namespace via switch. Starts network." "network: Mininet() network object"
"switch: switch to connect to root namespace" "ip: IP address for root namespace node"
"prefixLen: IP address prefix length (e.g. 8, 16, 24)" "routes: host networks to route to"
Create a node in root namespace and link to switch 0 root = Node('root', inNamespace=False)
intf = TCLink(root, switch).intf1 root.setIP(ip, prefixLen, intf)
Start network that now includes link to root namespace network.start()
Add routes from root ns to hosts for route in routes:
root.cmd('route add -net ' + route + ' dev ' + str(intf))

def sshd(network, cmd='/usr/sbin/sshd', opts='-D'):
"Start a network, connect it to root ns, and run sshd on all hosts." switch = network.switches[0] # switch to use
ip = ''# our IP address on host network
routes = ['10.0.1.0/16'] # host networks to route to connectToRootNS(network, switch, ip, 16, routes) for host in network.hosts:
host.cmd(cmd + ' ' + opts + '&')

DEBUGGING INFO
print
print "Dumping host connections" dumpNodeConnections(network.hosts) print
print "*** Hosts are running sshd at the following addresses:" print
for host in network.hosts: print host.name, host.IP()
print
print "*** Type 'exit' or control-D to shut down network" print
print "*** For testing network connectivity among the hosts, wait a bit for the controller to create all the routes, then do 'pingall' on the mininet console."
print

CLI(network)
for host in network.hosts:

host.cmd('kill %' + cmd) network.stop()

if name	== ' main ': setLogLevel('info') #setLogLevel('debug') sshd(myNetwork())

APPENDIX E
Installing GNS3 on Windows Operating System Steps:
1. Download GNS3 for windows from the gns3 website.
2. After creating an account and Login, download GNS3-all-in-one package.
3. Then, click Run to start the GNS3 installation and Next to continue.
4. Click I agree button to agree to the License Agreement.
5. Select the Start Menu folder for the GNS3 shortcut, and click Next.
6. Choose components or leave all selected at their default selection, and click Next.
7. Choose Install Location and click Install.
8. The installation wizard will guide you through installing the components selected.
9. On successful installation, an Installation Complete message is displayed. Click Next to continue.
10. Leave the Start GNS3 checkbox enabled and click Finish

Installing GNS3 VM Steps:
1. Download GNS3 VM, from gns3 website.
2. Unzip the downloaded zip file.
3. In VMware Workstation, click Open a Virtual Machine
4. Navigate to the directory where the extracted GNS3 VM.ova is located and click Open.
5. Leave the VM name as GNS3 VM and click Import.
6. GNS3 VM will show as available in VMware Workstation after the Import. Leave all settings at their defaults.

APPENDIX F
CIDC CODES
Producer
/**
By Benamrane Fouad
*/
package net.floodlightcontroller.secureSDNi;

import static org.jboss.netty.channel.Channels.pipeline; import java.io.BufferedReader;
import java.io.IOException; import java.io.InputStreamReader; import java.net.InetSocketAddress; import java.util.ArrayList;
import java.util.HashMap; import java.util.Iterator; import java.util.Set; import java.util.Collection; import java.util.List; import java.util.Map;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit;
import javax.net.ssl.SSLEngine;
import net.floodlightcontroller.core.IFloodlightProviderService; import net.floodlightcontroller.core.module.FloodlightModuleContext;
import net.floodlightcontroller.core.module.FloodlightModuleException;

import net.floodlightcontroller.core.module.IFloodlightModule; import net.floodlightcontroller.core.module.IFloodlightService; import net.floodlightcontroller.core.util.SingletonTask;
import net.floodlightcontroller.threadpool.IThreadPoolService;; import org.jboss.netty.bootstrap.ClientBootstrap;
import org.jboss.netty.channel.Channel; import org.jboss.netty.channel.ChannelEvent; import org.jboss.netty.channel.ChannelFuture;
import org.jboss.netty.channel.ChannelHandlerContext; import org.jboss.netty.channel.ChannelPipeline;
import org.jboss.netty.channel.ChannelPipelineFactory; import org.jboss.netty.channel.ChannelStateEvent; import org.jboss.netty.channel.ExceptionEvent;
import org.jboss.netty.channel.MessageEvent;
import org.jboss.netty.channel.SimpleChannelUpstreamHandler;
import org.jboss.netty.channel.socket.nio.NioClientSocketChannelFactory; import org.jboss.netty.handler.codec.frame.DelimiterBasedFrameDecoder; import org.jboss.netty.handler.codec.frame.Delimiters;
import org.jboss.netty.handler.codec.string.StringDecoder; import org.jboss.netty.handler.codec.string.StringEncoder; import org.jboss.netty.handler.ssl.SslHandler;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Producer implements IFloodlightModule,IHAControllerService, IStoreListener<String>, IHAWorkerService {

protected static List<Channel> CH;
protected IFloodlightProviderService floodlightProvider; protected static Logger logger;
protected SingletonTask mythread; protected Runnable SS;
protected IThreadPoolService threadPool; private ClientBootstrap bootstrap; protected static ChannelFuture future; private static Producer netClient=null; protected conf myConf;
protected static ChannelFuture connection;

public static synchronized Producer getnetClient(){ if(netClient==null){
netClient=new Producer();

}
@Override

}
return netClient;

public Collection<Class<? extends IFloodlightService>> getModuleDependencies() { Collection<Class<? extends IFloodlightService>> l =
new ArrayList<Class<? extends IFloodlightService>>(); l.add(IFloodlightProviderService.class); l.add(IThreadPoolService.class);
return l;
}
@Override

public Collection<Class<? extends IFloodlightService>> getModuleServices() { return null;
}
@Override
public Map<Class<? extends IFloodlightService>, IFloodlightService> getServiceImpls() {
return null;
}
@Override
public void init(FloodlightModuleContext context)
throws FloodlightModuleException { myConf = new conf();
CH= new ArrayList<Channel>();
floodlightProvider = context.getServiceImpl(IFloodlightProviderService.class);
logger = LoggerFactory.getLogger(Producer.class); threadPool=context.getServiceImpl(IThreadPoolService.class);
}
@Override
public void startUp(FloodlightModuleContext context)
throws FloodlightModuleException { ScheduledExecutorService ses = threadPool.getScheduledExecutor();
mythread = new SingletonTask (ses,new Runnable() { public void run() {

try{

logger.info("Waiting 10 sec"); Thread.sleep(10000);
logger.info("Producer :: "+myConf.getMode()+" mode is configured");

producer();
}
catch(Exception e){
logger.error("Exception detected "+e.getMessage());
}
}
});
mythread.reschedule(1, TimeUnit.SECONDS);
}
public void producer() throws IOException{
// Configure the client.
bootstrap = new ClientBootstrap(new NioClientSocketChannelFactory(Executors.newCachedThreadPool(), Executors.newCachedThreadPool()));
// Configure the pipeline factory.
bootstrap.setPipelineFactory(new SecureProducerPipelineFactory());
// Start the connection attempt. for(String h:myConf.getL()){
future = bootstrap.connect(new InetSocketAddress(h, myConf.getPort()));
if(!future.awaitUninterruptibly().isSuccess()) { logger.info("Producer :: Unable to connect to host " + h + ":" + myConf.getPort());
}
else{ logger.info("Producer :: Successfully connected to " + h + ":" + myConf.getPort());
CH.add(future.getChannel()); future.getChannel().write("Hello \n"); logger.info("Producer :: Hello sent to remote consumer");

}
} }
// Wait until the connection attempt succeeds or fails.
//Channel channel = future.awaitUninterruptibly().getChannel();
/*if (!future.isSuccess()) { future.getCause().printStackTrace(); bootstrap.releaseExternalResources(); return;
}
*/
// Read commands from the stdin.
/*ChannelFuture lastWriteFuture = null;
BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); for (;;) {
String line = in.readLine(); if (line == null) {
break;
}
// Sends the received line to the server. lastWriteFuture = channel.write(line + "\r\n");
// If user typed the 'bye' command, wait until the server closes
// the connection.
if (line.toLowerCase().equals("bye")) { channel.getCloseFuture().awaitUninterruptibly(); break;
}
}

// Wait until all messages are flushed before closing the channel. if (lastWriteFuture != null) {
lastWriteFuture.awaitUninterruptibly();

// }

}
// Close the connection. Make sure the close operation ends because
// all I/O operations are asynchronous in Netty. channel.close().awaitUninterruptibly();
// Shut down all thread pools to exit. bootstrap.releaseExternalResources();*/

public static List<Channel> getCH() { return CH;

}
public void setCH(List<Channel> cH) { CH = cH;
}
public static ChannelFuture getFuture() { return future;
}
public static void setFuture(ChannelFuture future) { Producer.future = future;
}
public class SecureProducerPipelineFactory implements ChannelPipelineFactory {
public ChannelPipeline getPipeline() throws Exception { ChannelPipeline pipeline = pipeline();
// Add SSL handler first to encrypt and decrypt everything.

// In this example, we use a bogus certificate in the server side
// and accept any invalid certificates in the client side.
// You will need something more complicated to identify both
// and server in the real world. if(myConf.isSSL()){
SSLEngine engine =
SecureSslContextFactory.getClientContext().createSSLEngine(); engine.setUseClientMode(true);
pipeline.addLast("ssl", new SslHandler(engine));
}
// On top of the SSL handler, add the text line codec. pipeline.addLast("decoder", new StringDecoder()); pipeline.addLast("encoder", new StringEncoder());
// and then business logic.
pipeline.addLast("handler", new SecureProducerHandler()); return pipeline;
}
}
public class SecureProducerHandler extends SimpleChannelUpstreamHandler {
//protected boolean SSL
@Override
public void handleUpstream(
ChannelHandlerContext ctx, ChannelEvent e) throws Exception {
/*if (e instanceof ChannelStateEvent) { logger.info(e.toString());
}
super.handleUpstream(ctx, e);*/

}

@Override
public void channelConnected(
ChannelHandlerContext ctx, ChannelStateEvent e) throws Exception {
// Get the SslHandler from the pipeline
// which were added in SecureChatPipelineFactory. if(myConf.isSSL()){
SslHandler sslHandler = ctx.getPipeline().get(SslHandler.class);
// Begin handshake. sslHandler.handshake();
}
logger.info("Producer:: Remote controller"+ctx.getChannel().getRemoteAddress().toString()+" is connected");
}

@Override

public void messageReceived(
ChannelHandlerContext ctx, MessageEvent e) throws Exception { if(!e.getMessage().equals("Hello \n"))
logger.info("Producer::from

"+e.getRemoteAddress().toString()+":"+e.getMessage().toString().replace("\n", ""));
super.messageReceived(ctx, e);

@Override

}

public void exceptionCaught(ChannelHandlerContext ctx, ExceptionEvent e) {
logger.warn(
"Unexpected exception from downstream.",

}
}
Consumer

e.getCause());
e.getChannel().close();
}

/*By Benamrane Fouad
**/
package net.floodlightcontroller.secureSDNi;

import static org.jboss.netty.channel.Channels.pipeline; import java.net.InetAddress;
import java.net.InetSocketAddress; import java.util.ArrayList;
import java.util.Collection; import java.util.List; import java.util.Map;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit;
import javax.net.ssl.SSLEngine;
import org.jboss.netty.bootstrap.ServerBootstrap; import org.jboss.netty.channel.ChannelEvent; import org.jboss.netty.channel.ChannelFuture;
import org.jboss.netty.channel.ChannelFutureListener; import org.jboss.netty.channel.ChannelHandlerContext; import org.jboss.netty.channel.ChannelPipeline;

import org.jboss.netty.channel.ChannelPipelineFactory; import org.jboss.netty.channel.ChannelStateEvent; import org.jboss.netty.channel.ExceptionEvent;
import org.jboss.netty.channel.MessageEvent;
import org.jboss.netty.channel.SimpleChannelUpstreamHandler; import org.jboss.netty.channel.group.ChannelGroup;
import org.jboss.netty.channel.group.DefaultChannelGroup;
import org.jboss.netty.channel.socket.nio.NioServerSocketChannelFactory; import org.jboss.netty.handler.codec.string.StringDecoder;
import org.jboss.netty.handler.codec.string.StringEncoder; import org.jboss.netty.handler.ssl.SslHandler;
import org.projectfloodlight.openflow.types.DatapathId; import org.projectfloodlight.openflow.types.EthType;
import org.projectfloodlight.openflow.types.IPv4AddressWithMask; import org.projectfloodlight.openflow.types.IpProtocol;
import org.projectfloodlight.openflow.types.MacAddress; import org.projectfloodlight.openflow.types.OFPort; import org.projectfloodlight.openflow.types.TransportPort; import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import net.floodlightcontroller.core.IFloodlightProviderService; import net.floodlightcontroller.core.module.FloodlightModuleContext;
import net.floodlightcontroller.core.module.FloodlightModuleException; import net.floodlightcontroller.core.module.IFloodlightModule;
import net.floodlightcontroller.core.module.IFloodlightService; import net.floodlightcontroller.core.util.SingletonTask;
import net.floodlightcontroller.dataCollector.DataTracker;

import net.floodlightcontroller.firewall.FirewallRule;
import net.floodlightcontroller.firewall.FirewallRule.FirewallAction; import net.floodlightcontroller.firewall.IFirewallService;
import net.floodlightcontroller.loadbalancer.ILoadBalancerService; import net.floodlightcontroller.loadbalancer.LBMember;
import net.floodlightcontroller.loadbalancer.LBPool; import net.floodlightcontroller.loadbalancer.LBVip;
import net.floodlightcontroller.threadpool.IThreadPoolService;

public class Consumer implements IFloodlightModule{ protected conf myConf;
protected IFloodlightProviderService floodlightProvider; protected static Logger logger;
protected IThreadPoolService threadPool; protected SingletonTask mythread; protected Runnable SS;
protected IThreadPoolService threadPoolService; protected IFirewallService firewallService; protected ILoadBalancerService lbService; protected FirewallRule newRule;
protected LBVip newVip; protected LBPool newPool; protected LBMember newMember;
public static DataTracker datatracker; public static Consumer Consumer = null;
protected static List<String> receivedVipNames; protected static List<String> receivedPoolNames;

protected static List<Integer> receivedMemberIPs; protected static List<Integer> receivedRulesIds;
static final ChannelGroup channels = new DefaultChannelGroup(); protected String message;
public static List<Integer> getReceivedRulesIds() { return receivedRulesIds;
}
public static List<String> getReceivedVipNames() { return receivedVipNames;
}
public static List<String> getReceivedPoolNames() { return receivedPoolNames;
}
public static List<Integer> getReceivedMemberIPs() { return receivedMemberIPs;
}
public String getMessage() { return message;
}
public void setMessage(String message) { this.message = message;
}
public static void setReceivedRulesIds(List<Integer> receivedRulesIds) { Consumer.receivedRulesIds = receivedRulesIds;
}
public static synchronized Consumer getConsumer(){ if(Consumer ==null){

Consumer = new Consumer();
}
return Consumer;
}
@Override
public Collection<Class<? extends IFloodlightService>> getModuleServices() {
// TODO Auto-generated method stub return null;
}
@Override
public Map<Class<? extends IFloodlightService>, IFloodlightService> getServiceImpls() {
// TODO Auto-generated method stub return null;
}
@Override
public Collection<Class<? extends IFloodlightService>> getModuleDependencies() { Collection<Class<? extends IFloodlightService>> l =
new ArrayList<Class<? extends IFloodlightService>>(); l.add(IFloodlightProviderService.class); l.add(IThreadPoolService.class); l.add(IFirewallService.class); l.add(ILoadBalancerService.class);
return l;
}
@Override
public void init(FloodlightModuleContext context)

throws FloodlightModuleException {
floodlightProvider = context.getServiceImpl(IFloodlightProviderService.class); threadPool = context.getServiceImpl(IThreadPoolService.class);
logger = LoggerFactory.getLogger(Consumer.class);
threadPoolService = context.getServiceImpl(IThreadPoolService.class); myConf=new conf();
firewallService = context.getServiceImpl(IFirewallService.class); lbService = context.getServiceImpl(ILoadBalancerService.class); newRule= new FirewallRule();
newVip = new LBVip(); newPool= new LBPool(); newMember = new LBMember(); datatracker = new DataTracker();
receivedRulesIds = new ArrayList<Integer>(); receivedMemberIPs = new ArrayList<Integer>(); receivedPoolNames = new ArrayList<String>(); receivedVipNames = new ArrayList<String>();
}
@Override
public void startUp(FloodlightModuleContext context) throws FloodlightModuleException {
ScheduledExecutorService ses = threadPoolService.getScheduledExecutor(); mythread = new SingletonTask (ses, new Runnable() {
public void run() { try{
Consumer();
}catch (Exception e) {

}
});

throw new RuntimeException(e);
}

mythread.reschedule(2,TimeUnit.SECONDS);
}
public void Consumer(){
ServerBootstrap bootstrap = new ServerBootstrap(new NioServerSocketChannelFactory(
Executors.newCachedThreadPool(), Executors.newCachedThreadPool()));
// Configure the pipeline factory.
bootstrap.setPipelineFactory(new SecureConsumerPipelineFactory());
// Bind and start to accept incoming connections. bootstrap.bind(new InetSocketAddress(myConf.getPort()));
}
public class SecureConsumerPipelineFactory implements ChannelPipelineFactory {
public ChannelPipeline getPipeline() throws Exception { ChannelPipeline pipeline = pipeline();
// Add SSL handler first to encrypt and decrypt everything.
// In this example, we use a bogus certificate in the server side
// and accept any invalid certificates in the client side.
// You will need something more complicated to identify both
// and server in the real world.
// Read SecureChatSslContextFactory
// if you need client certificate authentication.

if(myConf.isSSL()){ SSLEngine engine =
SecureSslContextFactory.getServerContext().createSSLEngine(); engine.setUseClientMode(false);

pipeline.addLast("ssl", new SslHandler(engine));
}
// On top of the SSL handler, add the text line codec. pipeline.addLast("decoder", new StringDecoder()); pipeline.addLast("encoder", new StringEncoder());
// and then business logic. pipeline.addLast("handler", new DataUpdater()); return pipeline;
}
}
public class DataUpdater extends SimpleChannelUpstreamHandler { final ChannelGroup channels = new DefaultChannelGroup();
@Override
public void handleUpstream(
ChannelHandlerContext ctx, ChannelEvent e) throws Exception { if (e instanceof ChannelStateEvent) {
logger.info(e.toString());
}
super.handleUpstream(ctx, e);
}
@Override
public void channelConnected(

ChannelHandlerContext ctx, ChannelStateEvent e) throws Exception { if(myConf.isSSL()){
// Get the SslHandler in the current pipeline.
// We added it in SecureChatPipelineFactory.
final SslHandler sslHandler = ctx.getPipeline().get(SslHandler.class);
// Get notified when SSL handshake is done. ChannelFuture handshakeFuture = sslHandler.handshake(); handshakeFuture.addListener(new Greeter(sslHandler));
}
logger.info("Consumer::Remote controller: "+e.getChannel().getRemoteAddress().toString()+" is connected!");
}
@Override
public void channelDisconnected(
ChannelHandlerContext ctx, ChannelStateEvent e) throws Exception {
// Unregister the channel from the global channel list
// so the channel does not receive messages anymore. channels.remove(e.getChannel()); logger.info("Consumer::Remote controller:
"+e.getChannel().getRemoteAddress().toString()+" is disconnected from the server.");
}
@Override
public void messageReceived(
ChannelHandlerContext ctx, MessageEvent e) throws Exception { message=e.getMessage().toString();
message = message.replace("\n", ""); if(message.contains("Hello")){
e.getChannel().write("Hello \n");

logger.info("Consumer::from "+e.getRemoteAddress().toString()+":"+message);
}
else if(message.contains("Firewall") && myConf.isFirewall()){ logger.info("New remote firewall rule received "); if(!firewallService.isEnabled())
{
firewallService.enableFirewall(true);
}
treatMessage(message);
}
else if(message.contains("LoadBalancer Vip created") && myConf.isLoadBalancer()){
logger.info("New remote Load Balancer vip received"); treatMessageVip(message);
}
else if(message.contains("LoadBalancer Pool created") &&
myConf.isLoadBalancer()){
logger.info("New remote Load Balancer pool received"); treatMessagePool(message);
}
else if(message.contains("LoadBalancer Member created") &&
myConf.isLoadBalancer()){
logger.info("New remote Load Balancer Member received"); treatMessageMember(message);

"+message);

}
else logger.info("Consumer::from "+e.getRemoteAddress().toString()+":

}
public void treatMessageMember(String Member){ String [] listMessage;
listMessage = Member.split(","); String id = listMessage[1]; newMember.setId(id);
int ip = Integer.parseInt(listMessage[2]); if(!receivedMemberIPs.contains(ip))
receivedMemberIPs.add(ip); newMember.setAddress(ip);
short port = Short.parseShort(listMessage[3]); newMember.setPort(port);
String poolId = listMessage[4]; newMember.setPoolId(poolId); lbService.createMember(newMember);
}
public void treatMessagePool(String pool){ String [] listMessage;
listMessage = pool.split(","); String id = listMessage[1]; newPool.setId(id);
String name = listMessage[2]; if(!receivedPoolNames.contains(name)) receivedPoolNames.add(name); newPool.setName(name);
byte protocol = Byte.parseByte(listMessage[3]); newPool.setProtocol(protocol);

String vipId= listMessage[4]; newPool.setVipId(vipId); lbService.createPool(newPool);
}
public void treatMessageVip(String vip){ String[] listMessage;
listMessage = vip.split(","); String id=listMessage[1]; newVip.setId(id);
String name = listMessage[2]; if(!receivedVipNames.contains(name)) receivedVipNames.add(name); newVip.setName(name);
byte protocol = Byte.parseByte(listMessage[3]); newVip.setProtocol(protocol);
int ip = Integer.parseInt(listMessage[4]); newVip.setAddress(ip);
short port = Short.parseShort(listMessage[5]); newVip.setPort(port); lbService.createVip(newVip);
}
@SuppressWarnings("static-access") public void treatMessage(String msg){
String[] listMessage; listMessage = msg.split(",");
int ID=Integer.parseInt(listMessage[1]); newRule.setRuleid(ID);

if(!receivedRulesIds.contains(ID)) receivedRulesIds.add(ID);
/*if(!datatracker.getRuleIds().contains(ID))
{*/
DatapathId id = DatapathId.of(listMessage[2]); newRule.setDpid(id);
OFPort port;
if (listMessage[3].equals("any")) port =OFPort.ANY;
else if (listMessage[3].equals("all")) port =OFPort.ALL;
else if (listMessage[3].equals("flood")) port =OFPort.FLOOD;
else port = OFPort.of(Integer.parseInt(listMessage[3])); newRule.setIn_port(port);
MacAddress Mac = MacAddress.of(listMessage[4]); newRule.setDl_src(Mac);
Mac = MacAddress.of(listMessage[5]); newRule.setDl_dst(Mac);
EthType type = EthType.of(Integer.parseInt(listMessage[6])); newRule.setDl_type(type);
IPv4AddressWithMask ip = IPv4AddressWithMask.of(listMessage[7]);
newRule.setNw_src_prefix_and_mask(ip);
ip = IPv4AddressWithMask.of(listMessage[8]);
newRule.setNw_dst_prefix_and_mask(ip); IpProtocol proto =
IpProtocol.of(Short.parseShort(listMessage[9]));

newRule.setNw_proto(proto);
TransportPort tcpPort = TransportPort.of(Integer.parseInt(listMessage[10]));
newRule.setTp_src(tcpPort);
tcpPort = TransportPort.of(Integer.parseInt(listMessage[11])); newRule.setTp_dst(tcpPort);
boolean anyS = stringToBoolean(listMessage[12]); newRule.setAny_in_port(anyS);
anyS = stringToBoolean(listMessage[13]); newRule.setAny_dl_src(anyS);
anyS = stringToBoolean(listMessage[14]); newRule.setAny_dl_dst(anyS);
anyS = stringToBoolean(listMessage[15]); newRule.setAny_dl_type(anyS);
anyS = stringToBoolean(listMessage[16]); newRule.setAny_nw_src(anyS);
anyS = stringToBoolean(listMessage[17]); newRule.setAny_nw_dst(anyS);
anyS = stringToBoolean(listMessage[18]); newRule.setAny_nw_proto(anyS);
anyS = stringToBoolean(listMessage[19]); newRule.setAny_tp_src(anyS);
anyS = stringToBoolean(listMessage[20]); newRule.setAny_tp_dst(anyS); newRule.setPriority(Integer.parseInt(listMessage[21])); FirewallAction action = FirewallAction.valueOf(listMessage[22]); newRule.setAction(action);

firewallService.addRule(newRule);
//}
//else logger.info("Rule already existe");
}
public boolean stringToBoolean(String msg)
{

}
@Override

if(msg.equals("true"))
return true; else return false;

public void exceptionCaught(ChannelHandlerContext ctx, ExceptionEvent e) {
logger.warn("Unexpected exception from downstream.", e.getCause());
e.getChannel().close();
}
private final class Greeter implements ChannelFutureListener { private final SslHandler sslHandler;
Greeter(SslHandler sslHandler) { this.sslHandler = sslHandler;
}
public void operationComplete(ChannelFuture future) throws Exception { if (future.isSuccess()) {
// Once session is secured, send a greeting. future.getChannel().write(
"Welcome to " + InetAddress.getLocalHost().getHostName() +

" secure chat service!\n"); future.getChannel().write(
"Your session is protected by " + sslHandler.getEngine().getSession().getCipherSuite() + " cipher suite.\n");
// Register the channel to the global channel list
// so the channel received the messages from others. channels.add(future.getChannel());
} else {
future.getChannel().close();
}
}
}
}
}

APPENDIX G
mCIDC Codes
/**
By Benamrane Fouad Adekale Abdulfatai
*/
package net.floodlightcontroller.secureSDNi;

import static org.jboss.netty.channel.Channels.pipeline; import java.io.IOException;
import java.net.InetSocketAddress; import java.util.ArrayList;
import java.util.Collection; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.HashMap; import java.util.Set;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit;

import javax.net.ssl.SSLEngine;

import org.jboss.netty.bootstrap.ClientBootstrap; import org.jboss.netty.channel.Channel;
import org.jboss.netty.channel.ChannelEvent;

import org.jboss.netty.channel.ChannelFuture;
import org.jboss.netty.channel.ChannelHandlerContext; import org.jboss.netty.channel.ChannelPipeline;
import org.jboss.netty.channel.ChannelPipelineFactory; import org.jboss.netty.channel.ChannelStateEvent; import org.jboss.netty.channel.ExceptionEvent;
import org.jboss.netty.channel.MessageEvent;
import org.jboss.netty.channel.SimpleChannelUpstreamHandler;
import org.jboss.netty.channel.socket.nio.NioClientSocketChannelFactory; import org.jboss.netty.handler.codec.string.StringDecoder;
import org.jboss.netty.handler.codec.string.StringEncoder; import org.jboss.netty.handler.ssl.SslHandler;
import org.sdnplatform.sync.IStoreClient; import org.sdnplatform.sync.IStoreListener; import org.sdnplatform.sync.ISyncService;
import org.sdnplatform.sync.ISyncService.Scope; import org.sdnplatform.sync.error.SyncException; import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import net.floodlightcontroller.core.IFloodlightProviderService; import net.floodlightcontroller.core.module.FloodlightModuleContext;
import net.floodlightcontroller.core.module.FloodlightModuleException; import net.floodlightcontroller.core.module.IFloodlightModule;
import net.floodlightcontroller.core.module.IFloodlightService; import net.floodlightcontroller.core.util.SingletonTask;
import net.floodlightcontroller.linkdiscovery.ILinkDiscoveryService;

import net.floodlightcontroller.secureSDNi.linkdiscovery.LDHAWorker; import net.floodlightcontroller.secureSDNi.topology.TopoHAWorker; import net.floodlightcontroller.storage.IStorageSourceService;
import net.floodlightcontroller.threadpool.IThreadPoolService; import net.floodlightcontroller.topology.ITopologyService;

public class Producer implements IFloodlightModule, IStoreListener<String>, IHAWorkerService {

protected static List<Channel> CH;
protected IFloodlightProviderService floodlightProvider; protected static Logger logger;
protected SingletonTask mythread;
protected static IHAWorkerService haworker; protected static ILinkDiscoveryService linkserv; protected static ITopologyService toposerv; protected static ISyncService syncService;
protected static IStoreClient<String,String> storeFT; protected static IStoreClient<String, String> storeLD; protected static IStoreClient<String, String> storeTopo; private static String controllerID;
protected static LDHAWorker ldhaworker; protected static TopoHAWorker topohaworker;
private static Map<String, IHAWorker> workers = new HashMap<>(); protected Runnable SS;
protected IThreadPoolService threadPool; private ClientBootstrap bootstrap;

protected static ChannelFuture future; private static Producer netClient=null; protected conf myConf;
protected static ChannelFuture connection;

public static synchronized Producer getnetClient(){ if(netClient==null){
netClient=new Producer();
}
return netClient;
}

@Override
public Collection<Class<? extends IFloodlightService>> getModuleDependencies() { Collection<Class<? extends IFloodlightService>> l =
new ArrayList<Class<? extends IFloodlightService>>(); l.add(IFloodlightProviderService.class); l.add(IThreadPoolService.class); l.add(IStorageSourceService.class);
l.add(ISyncService.class); return l;
}

@Override
public Collection<Class<? extends IFloodlightService>> getModuleServices() { Collection<Class<? extends IFloodlightService>> l = new ArrayList<>();
l.add(IHAWorkerService.class);

}
/**

return l;

* Gets the specified HAWorker object.**/
@Override
public IHAWorker getService(String serviceName) {
synchronized (workers) {
return workers.get(serviceName);
}
}
@Override
public Map<Class<? extends IFloodlightService>, IFloodlightService> getServiceImpls() {
Map<Class<? extends IFloodlightService>, IFloodlightService> m = new HashMap<>();
/**
* We are the class that implements the service**/ m.put(IHAWorkerService.class, this);
return m;
}
/**

@Override
·
Returns the keys of the workers hashmap, which holds the objects
· corresponding to the registered HAWorker classes.
**/

public Set<String> getWorkerKeys() {
synchronized (workers) { return workers.keySet();

}
}
@Override
public void init(FloodlightModuleContext context) throws FloodlightModuleException {
myConf = new conf(); CH= new ArrayList<Channel>();
floodlightProvider = context.getServiceImpl(IFloodlightProviderService.class);
logger = LoggerFactory.getLogger(Producer.class); threadPool=context.getServiceImpl(IThreadPoolService.class); haworker = this;
linkserv = context.getServiceImpl(ILinkDiscoveryService.class); toposerv = context.getServiceImpl(ITopologyService.class); syncService = context.getServiceImpl(ISyncService.class); controllerID = new String("C" + floodlightProvider.getControllerId());
}
@Override
public void keysModified(Iterator<String> keys, org.sdnplatform.sync.IStoreListener.UpdateType type) {
}
@Override
public void registerService(String serviceName, IHAWorker haw) { synchronized (workers) { workers.putIfAbsent(serviceName, haw);
}
}

@Override
public void startUp(FloodlightModuleContext context) throws FloodlightModuleException {
logger.info("LDHAWorker is starting...");
try {
Producer.syncService.registerStore("LDUpdates", Scope.GLOBAL); Producer.storeLD = Producer.syncService.getStoreClient("LDUpdates",
String.class, String.class);
Producer.storeLD.addStoreListener(this);
} catch (SyncException e) {
throw new FloodlightModuleException("Error while setting up sync service", e);
}

controllerID);

Producer.ldhaworker = new LDHAWorker(Producer.storeLD,

linkserv.addListener(Producer.ldhaworker); haworker.registerService("LDHAWorker", Producer.ldhaworker);

logger.info("TopoHAWorker is starting..."); try {
Producer.syncService.registerStore("TopoUpdates", Scope.GLOBAL);
Producer.storeTopo = Producer.syncService.getStoreClient ("TopoUpdates", String.class, String.class);
Producer.storeTopo.addStoreListener(this);
} catch (SyncException e) {
throw new FloodlightModuleException("Error while setting up sync service", e);
}
Producer.topohaworker = new TopoHAWorker(Producer.storeTopo,
controllerID);
toposerv.addListener(Producer.topohaworker);

haworker.registerService("TopoHAWorker", Producer.topohaworker);

ScheduledExecutorService ses = threadPool.getScheduledExecutor(); mythread = new SingletonTask (ses,new Runnable() {
public void run() { try{

configured");

logger.info("Waiting 10 sec"); Thread.sleep(10000);
logger.info("Producer:: "+myConf.getMode()+" mode is

producer ();
}

catch(Exception e){
logger.error("Exception detected "+e.getMessage());
}
}
});
mythread.reschedule(1, TimeUnit.SECONDS);
/** try {
Producer.syncService.registerStore("StoreUpdates", Scope.GLOBAL); Producer.storeFT = Producer.syncService.getStoreClient("StoreUpdates",
String.class, String.class);
Producer.storeFT.addStoreListener(this);
} catch (SyncException e) {
throw new FloodlightModuleException ("Error while setting up sync

service", e);

}

}**/

public void Producer () throws IOException{
// Configure the client.
bootstrap = new ClientBootstrap(new NioClientSocketChannelFactory(Executors.newCachedThreadPool(), Executors.newCachedThreadPool()));
// Configure the pipeline factory.
bootstrap.setPipelineFactory(new SecureProducerPipelineFactory());
// Start the connection attempt.
for (String h:myConf.getControllerID()){
future = bootstrap.connect(new InetSocketAddress(h, myConf.getPort()));
if(!future.awaitUninterruptibly().isSuccess()) {
logger.info ("Producer:: Unable to connect to host " + h + ":" + myConf.getPort());
}
else{ logger.info("Producer:: Successfully connected to " + h + ":" + myConf.getPort()); CH.add(future.getChannel());
future.getChannel().write("Hello \n");
logger.info ("Producer:: Hello sent to remote consumer");
}
} }
// Wait until the connection attempt succeeds or fails.
//Channel channel = future.awaitUninterruptibly().getChannel();
/*if (!future.isSuccess()) { future.getCause().printStackTrace(); bootstrap.releaseExternalResources(); return;
}

*/
// Read commands from the stdin.
/*ChannelFuture lastWriteFuture = null;
BufferedReader in = new BufferedReader (new InputStreamReader(System.in)); for (;;) {
String line = in.readLine(); if (line == null) {
break;
}
// Sends the received line to the server. lastWriteFuture = channel.write(line + "\r\n");
// If user typed the 'bye' command, wait until the server closes
// the connection.
if (line.toLowerCase().equals("bye")) { channel.getCloseFuture().awaitUninterruptibly(); break;
}
}
// Wait until all messages are flushed before closing the channel. if (lastWriteFuture != null) {
lastWriteFuture.awaitUninterruptibly();
}
// Close the connection. Make sure the close operation ends because
// all I/O operations are asynchronous in Netty. channel.close().awaitUninterruptibly();
// Shut down all thread pools to exit. bootstrap.releaseExternalResources();*/

// }

public static List<Channel> getCH() { return CH;
}
public void setCH(List<Channel> cH) { CH = cH;
}
public static ChannelFuture getFuture() { return future;
}
public static void setFuture(ChannelFuture future) { Producer.future = future;
}
public class SecureProducerPipelineFactory implements ChannelPipelineFactory {
public ChannelPipeline getPipeline() throws Exception { ChannelPipeline pipeline = pipeline();
// Add SSL handler first to encrypt and decrypt everything.
// In this example, we use a bogus certificate in the server side
// and accept any invalid certificates in the client side.
// You will need something more complicated to identify both
// and server in the real world. if(myConf.isSSL()){ SSLEngine engine =
SecureSslContextFactory.getClientContext ().createSSLEngine (); engine.setUseClientMode(true);

pipeline.addLast("ssl", new SslHandler(engine));
}
// On top of the SSL handler, add the text line codec. pipeline.addLast("decoder", new StringDecoder()); pipeline.addLast("encoder", new StringEncoder());
// and then business logic.
pipeline.addLast("handler", new SecureProducerHandler()); return pipeline;
}
}
public class SecureProducerHandler extends SimpleChannelUpstreamHandler
//protected boolean SSL @Override
public void handleUpstream (
ChannelHandlerContext ctx, ChannelEvent e) throws Exception
{
/*if (e instanceof ChannelStateEvent) {
logger.info(e.toString());

@Override

}
super.handleUpstream(ctx, e);*/
}

public void channelConnected (
ChannelHandlerContext ctx, ChannelStateEvent e) throws Exception {
// Get the SslHandler from the pipeline

// which were added in SecureChatPipelineFactory. if(myConf.isSSL()){
SslHandler sslHandler = ctx.getPipeline().get(SslHandler.class);
// Begin handshake. sslHandler.handshake();
}
logger.info ("Producer:: Remote controller"+ctx.getChannel().getRemoteAddress().toString()+" is connected");
}
@Override
public void messageReceived (
ChannelHandlerContext ctx, MessageEvent e) throws Exception { if(!e.getMessage().equals("Hello \n"))
logger.info("Producer::from "+e.getRemoteAddress().toString()+":"+e.getMessage().toString().replace("\n", ""));
super.messageReceived(ctx, e);
}
@Override
public void exceptionCaught(
ChannelHandlerContext ctx, ExceptionEvent e) { logger.warn(
"Unexpected exception from downstream.", e.getCause());
e.getChannel().close();
}
}

APPENDIX H
NETWORK POLICIES
Note:
1. If action is not specified, it implies ALLOW rule.
2. To use the Curl command, run sudo apt install curl
3. To list all ACL rules on a network:
Curl http://<controller_ip>:8080/wm/acl/rules/json | python -mjson.tool

Network 1 (VM1)
1. Curl –X POST –d ‘{“src-ip”: “10.0.0.11/16”, “dst-ip”: “10.0.0.9/16”, “nw-
proto”:“udp”,“action”:“ALLOW”}’ http://<controller_ip>:8080/wm/acl/rules/json
Curl –X POST –d ‘{“src-ip”: “10.0.0.9/16”, “dst-ip”: “10.0.0.11/16”, “nw-
proto”:“udp”, “action”:“ALLOW”}’ http://<controller_ip>:8080/wm/acl/rules/json
2. Curl –X POST –d ‘{“switch id”:“00:00:00:00:00:00:00:14”}’
http://<controller_ip>:8080/wm/acl/rules/json
3. Curl –X POST –d ‘{“src-ip”:“10.0.0.13/16”,“dst-
ip”:“10.0.0.12/16”,“action” :“DENY”}’
http://<controller_ip>:8080/wm/acl/rules/json
4. Curl –X POST –d ‘{“src-ip”:“10.0.0.13/16”,“dst-
ip”:“10.0.0.12/16”,“action” :“ALLOW”}’
http://<controller_ip>:8080/wm/acl/rules/json Network 2 (VM2)
1. Curl –X POST –d ‘{“src-ip”: “10.0.0.10/16”, “dst-ip”: “10.0.0.14/16”, “nw-
proto”:“udp”,“action”:“ALLOW”}’ http://<controller_ip>:8080/wm/acl/rules/json
Curl –X POST –d ‘{“src-ip”: “10.0.014./16”, “dst-ip”: “10.0.0.10/16”, “nw-
proto”:“udp”, “action”:“ALLOW”}’ http://<controller_ip>:8080/wm/acl/rules/json
2. Curl –X POST –d ‘{“switch id”:“00:00:00:00:00:00:00:14”}’
http://<controller_ip>:8080/wm/acl/rules/json
3. Curl –X POST –d ‘{“src-ip”:“10.0.0.13/16”,“dst-
ip”:“10.0.0.12/16”,“action” :“ALLOW”}’
http://<controller_ip>:8080/wm/acl/rules/jsonCurl –X POST –d ‘{“src- ip”:“10.0.0.13/16”,“dst-ip”:“10.0.0.12/16”,“action” :“DENY”}’
http://<controller_ip>:8080/wm/acl/rules/json

Network 3 (VM3)
1. Curl –X POST –d ‘{“src-ip”: “10.0.0.4/16”, “dst-ip”: “10.0.0.12/16”, “nw-
proto”:“udp”,“action”:“DENY”}’ http://<controller_ip>:8080/wm/acl/rules/json Curl –X POST –d ‘{“src-ip”: “10.0.0.12/16”, “dst-ip”: “10.0.0.4/16”, “nw-
proto”:“udp”, “action”:“DENY”}’ http://<controller_ip>:8080/wm/acl/rules/json
2. Curl –X POST –d ‘{“switch id”:“00:00:00:00:00:00:00:14”}’
http://<controller_ip>:8080/wm/acl/rules/json
3. Curl –X POST –d ‘{“src-ip”:“10.0.0.14/16”,“dst-
ip”:“10.0.0.3/16”,“action” :“DENY”}’
http://<controller_ip>:8080/wm/acl/rules/jsonCurl –X POST –d ‘{“src- ip”:“10.0.0.3/16”,“dst-ip”:“10.0.0.14/16”,“action” :“ALLOW”}’
http://<controller_ip>:8080/wm/acl/rules/json

APPENDIX I
Floodlight launch from eclipse
1. Open eclipse
2. Open File
3. Import from Existing Workspace
4. Open Folder containing Floodlight controller (i.e. Home  Floodlight)
5. Highlight floodlight (in the box Projects)
6. Finish (Note: Do not Interrupt ‘Building Workspace’)
7. Right-Click “Floodlight” in project explorer
8. Run as – “Run configuration”
9. Click new launch configuration, under Java Application
10. Name - FloodlightLaunch
11. Main Class – net.floodlightcontroller.core.Main
12. Click Apply
13. Close the window
14. Run FloodlightLaunch from Java Application

APPENDIX J
Creating a module
1. Open Eclipse
2. Open File
3. Import from Existing Workspace
4. Select “Floodlight” from the Home directory (or directory containing floodlight)
5. Highlight floodlight (in the box Projects)
6. Finish (Note: Do not Interrupt ‘Building Workspace’)
7. Inside the project explorer, select click on “Floodlight”
8. Select “src/main/java” folder
9. Right-click New
10. Select Class
11. Package module name – net.floodlightcontroller.name of package (for example; net.floodlightcontroller.secureSDNi)
12. Name – Producer (this is the class name)
13. Click interface	to Add “IFloodlightModule”	(optional: you can select more interfaces to add necessary interfaces)
14. Click Finish
15. The skeleton of the package module is created.

Registering a module
1. Open “Floodlight”
2. Open “src/main/resource”
3. Open “floodlightdefault.properties”
4. Add the module name (for example; net.floodlightcontroller.secureSDNi.Producer)
5. Note: Previous line before your module name; add a “ \ ” after the comma (,).
6. Save
7. Open the folder “META-INF-SERVICES” under “src/main/resource”
8. Open “net.floodlightcontroller.core.module.IFloodlightModule”
9. Add the module name (for example; net.floodlightcontroller.secureSDNi.Producer)
10. Save
image1.png
Apglication(closed)
(Telnes, KITP,)

Cortiol Plane{closed]
(Netvicrc map, Fow cortro)

)
Cxningspekn

Sottware

Hardware

Tradition:] device

image2.png
Network
Avps =
.
Control Northbound Interface
plane Controller

E.g., OpenFlow
Data [Southbound Interface
plane

Switches

image3.jpeg
Application Layer

Unified Network
Monitoring and Analysis

Network Access Control and
Bring Your Own Device (BYOD)

Network
Virtualization

Security Apps
(Fw, IDPS, WAF)

Other Business

Apps

Other Business

Apps

¢ Northbound API (e.g. REST API, etc.)

Control Layer

SDN
Controller

Westbound API
e E—

SDN
Controller

Eastbound API
>

SDN
Controller

PCEP, etc.)

i Southbound API (e.g. OpenFlow, ForCES,

Infrastructure Layer

Physical switches

image4.jpeg
Controller

————— OpenFlow Protocol ———— Physical Links
Gy Fast-west Bridge % SDN Switch

image5.jpeg

image6.png
Network Network Network
(a) Vertical Approach
Network [« Network }i—r Network

(b) Horizontal Approach

image7.png
REST Applications

Circuit Openstack
Pusher Quantum Plugin
hon

REST API

Module Applications

Applications in any language leveraging services
APl exposed by controller modules and module

Floodlight Controller

®
VNF Packet || Jython | Wel
Streamer | | Server || UI
Firewall@
Porthown | yarding ik = I’—How-
Reconcilat
Sl Manager eracsd Discovery | ! Cache*

Routing
Hub

Java API

OpenFlow Services

R R R
Applications with Controller Y e
higher bandwidth Memory

communication
with controll
such as Packe

* |nterfaces defined only & not implemented: FlowCache, NoSql

Core services of common interest to SDN applicat

image8.jpeg
Capacity: 100Mbp

apacity: 100Mbps
Hpills 2 Latency: 25ms

Latency:5ms

WAN
Capacity: 10Mbps
Latency: 10ms

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png
‘Manchester

New York

Amsterdam

Berlin

ich

st Barcelona

image29.jpeg
‘Switchl

Ubuntu1 ubuntu3

Ubuntu2

102 168 221 130

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.jpeg
[root@mininet-vn:~/assessing-mininet/parser# python claranet.py --controller=remote,port=6653,protocols=openFlowi3 --link tc,bw=1000,delay=30ns

[*** Creating network

*** pdding hosts:

|he h1 h2 h3 h4 hs h6 h7 hg h9 hie hi1 hi2 hi3 h14

*%+ Adding switches:

50 s1 52 53 54 55 56 S7 S8 59 510 s11 s12 513 514

*%+ Adding links:

I(s6, ho) (1000.06Mbit 36ms delay) (1000.06Mbit 36ms delay) (s0, s3) (s1, h1) (1000.00Mbit 3oms delay) (1000.00Mbit 30ms delay) (s1, s3) (1000.0

lombit 30ms delay) (1000.06Mbit 30ms delay) (s1, s4) (s2, h2) (1600.08Mbit 3oms delay) (1600.08Mbit 36ms delay) (s2, s3) (s3, h3) (1000.e0Mbit 3

lons delay) (1600.08Mbit 3oms delay) (s3, s14) (s4, ha) (1000.60Mbit 30ms delay) (1080.00Mbit 30ms delay) (s4, si12) (s5, hs) (1000.e0Mbit 3ems d

lelay) (1800.08Mbit 3oms delay) (s5, s14) (s6, h6) (1080.60Mbit 30ms delay) (1080.60Mbit 30ms delay) (s6, s14) (s7, h7) (1600.06Mbit 3ems delay)
(1000.00Mbit 36ms delay) (s7, s8) (1000.06Mbit 3oms delay) (1060.06Mbit 3oms delay) (s7, s10) (1060.00Mbit 3oms delay) (1060.00Mbit 3oms delay
) (s7, s14) (s8, h8) (s9, ho) (1000.00Mbit 3ems delay) (1000.00Mbit 36ms delay) (s9, s10) (1000.00Mbit 36ms delay) (1000.60Mbit 36ms delay) (s9

|, s11) (s10, h10) (1000.00Mbit 30ms delay) (1000.60Mbit 30ms delay) (s10, si1) (1600.60Mbit 30ms delay) (1000.60Mbit 36ms delay) (s1e, s12) (10

|00.60Mbit 36ms delay) (1000.60Mbit 36ms delay) (s10, s14) (s11, hil) (s12, h12) (1060.60Mbit 30ms delay) (1060.00Mbit 30ms delay) (s12, s13) (1

|000.00Mbit 30ms delay) (1000.06Mbit 30ms delay) (s12, s14) (s13, hi3) (s14, h14)

[*** Configuring hosts

0 (cfs -1/100000us) hi (cfs -1/100080us) h2 (cfs -1/160000us) h3 (cfs -1/100000us) ha (cfs -1/160060us) h5 (cfs -1/100008us) h6 (cfs -1/100000

Yus) h7 (cfs -1/100000us) hg (cfs -1/100000us) h9 (cfs -1/100006us) h1e (cfs -1/100006us) hii (cfs -1/100000us) hi2 (cfs -1/100000us) hi3 (cfs -
|1/160000us) hi4 (cfs -1/100080us)

**+ Starting controller

c1c2c3

**% Starting 15 switches

|s6 51 52 3 s4 55 56 S7 S8 $9 510 s11 512 s13 s14 ...(1000.00Mbit 30ms delay) (1000.06Mbit 3oms delay) (1000.08Mbit 3oms delay) (1000.08Mbit 30
Ins delay) (1060.60Mbit 30ms delay) (1060.00Mbit 30ms delay) (1060.60Mbit 30ms delay) (1060.00Mbit 30ms delay) (1060.00Mbit 30ms delay) (1060.00
IMbit 30ms delay) (1000.00Mbit 36ms delay) (1000.@@Mbit 36ms delay) (1000.08Mbit 36ms delay) (1000.06Mbit 3oms delay) (1006.00Mbit 3oms delay) (
1000.60Mbit 36ms delay) (1000.60Mbit 36ms delay) (1000.60Mbit 36ms delay) (1000.60Mbit 36ms delay) (1000.60Mbit 36ms delay) (1000.00Mbit 36ms d
elay) (1000.00Mbit 30ms delay) (1000.06Mbit 30ms delay) (1060.06Mbit 30ms delay) (1060.06Mbit 30ms delay) (1060.06Mbit 3oms delay) (1060.00Mbit
30ms delay) (1000.60Mbit 30ms delay) (1060.60Mbit 30ms delay) (1060.60Mbit 30ms delay) (1000.60Mbit 30ms delay) (1000.60Mbit 30ms delay) (1000
.oMbit 30ms delay) (1000.60Mbit 30ms delay) (1000.60Mbit 30ms delay) (1000.60Mbit 30ms delay)

‘Dumping host connections
'he he-ethe:se-eth1
|h1 hi-etho:si-ethi
h2-etho:s2-eth1
h3-etho:s3-eth1
ha-etho:sa-ethi
h5-etho:s5-eth1
h6-etho:s6-eth1
h7-etho:s7-eth1
hg-etho:s8-eth1
ho-etho:s9-eth1

image48.jpeg
eclipse-workspace - Eclipse 1y 4) 10:02Al

R quickacees) || . |

NiBvOLR-AUIROIOES S

C:) =15 @~

p — - — = N
2 PackageEx 3| = O |[[2l Problems @ Javadoc @ Declaration (@ Console % | & ErrorLog - X % P® -8~ -0|
(3 - ‘FlondllghtLaun(h [JavaAppll(atmn]/usr/llb/]vm/]ava 8-oracle/bin/java (Mar 18, 2018, 10:01:17 AM) I

| 20rs-0315 Ta3 4 UrhiTnmanager] L1STening Tor UpENFLow SWTCNES on 19.u.u.ul:ood3 |

£> floodlight [Floodlight m 1zm 03-18

|2018-03°18
|2018-03°18
|2018-03°18
|2018-03°18
|2018-03°18
12018-03-18
|2018-03°18
|2018-03°18
|2018-03-18
|2018-03°18
‘ZH!B 03-18
|2018-03°18
|2018-03°18
| 2018-03-18
|2018-03°18
|2018-03°18
12018-03-18
|2018-03°18
|2018-03°18
|2018-03°18
|2018-03°18
12018-03-18
|2018-03°18
|2018-03°18
|2018-03-18
|2018-03°18
‘ZH!B 03-18
|2018-03°18
|2018-03°18
| 2018-03-18
|2018-03°18
|2018-03°18
12018-03-18
|2018-03°18
|2018-03°18
|2018-03°18
|2018-03°18
12018-03-18

1436 INFo In. 16 worker thread(s), 66060 ms TCi
.110 INFO [n.
.111 INFO [n.

111 WARN [n.

_OFSwitchManager] OpenFlow socket config: 1 boss thread(s)
-Controller] ControllerId set to 1

_Controller] shutdown when controller transitions to STANDBY HA role: true

-Controller] Controller will automatically deserialize all Ethernet packet-in messages. Set
.348 INFO [n. -Controller] Controller role set to ACTIVE

.950 INFO [n. -LinkDiscoveryManager] Link latency history set to 10 LLDP data points
(61 INFO [n.f.1.i.LinkDiscoveryManager] Latency update threshold set to +/-0.5 (50.0%) of rolling historical av
.216 INFO [n.f.t.TopologyManager] Path metrics set to LATENCY

.216 INFO [n.f.t.TopologyManager] Will compute a max of 3 paths upon topology updates
.514 INFO [n.f.f.Forwarding] Default hard timeout not configured. Using @

.516 INFO [n.f.f.Forwarding] Default idle timeout set to 5

.662 INFO [n.f.f.Forwarding] Default table ID not configured. Using 0xo

.662 INFO [n.f.f.Forwarding] Default priority not configured. Using 1

.662 INFO [n.f.f.Forwarding] Default flags will be set to SEND_FLOW_REM false

.662 INFO [n.f.f.Forwarding] Default flow matches set to: IN_PORT=true, VLAN=true, MAC<true, IP=true, FLAG=true
.663 INFO [n.f.f.Forwarding] Default detailed flow matches set to: SRC MAC=true, DST MAC=true, SRC_IP=true, DST
.663 INFO [n.f.f.Forwarding] Not flooding ARP packets. ARP flows will be inserted for known destinations

.663 INFO [n.f.f.Forwarding] Flows will be removed on link/port down events

.663 INFO [n.f.s.StatisticsCollector] Statistics collection disabled

.663 INFO [n.f.s.StatisticsCollector] Port statistics collection interval set to 10s

.871 INFO [n.f.f.Firewalll New listener 1

.448 INFO [0.5.5.1.SyncManager] [1] Updating sync configuration ClusterConfig [allNodes={1-Node [hostname=192.1
.105 INFO [0.s.5.1.r.RPCService] Listening for internal floodlight RPC on ©.6.0.6/6.0.0.0:6642

117 INFO [n.f.s.Producer] Waiting 10 sec

.241 INFO [o.r.C.I.Server] Starting the Simple [HTTP/1.1] server on port 8089

.273 INFO [org.restlet] Starting net.floodlightcontroller.restserver.RestApiServersRestApplication application
.119 INFO [n.f.s.Producer] Producer :: Notification mode is configured

.664 INFO [n.f.s.Producer] Producer :: Successfully connected to 192.168.221.129:9999

.8 INFO [n.f.s.Producer] Producer :: Hello sent to remote consumer

.40 INFO [n.f.s.Producer] Producer :: Successfully connected to 192.168.221.130:9999

.41 INFO [n.f.s.Producer] Producer :: Hello sent to remote consumer

.47 INFO [n.f.s.Producer] Producer :: Successfully connected to 192.168.221.131:9999

.47 INFO [n.f.s.Producer] Producer :: Hello sent to remote consumer

.139 INFO [n.f.s.Consumer] [id: 0x61a75b93, /192.168.221.131:47154 => /192.168.221.131:9999] OPEN

.138 INFO [n.f.s.Consumer] [id: 0x61a75b93, /192.168.221.131:47154 => /192.168.221.131:9999] BOUND: /192.168.22
.138 INFO [n.f.s.Consumer] [id: 0x61a75b93, /192.168.221.131:47154 => /192.168.221.131:9999] CONNECTED: /192.1€
.138 INFO [n.f.s.Consumer] Consumer::Remote controller: /192.168.221.131:47154 is connected
.148 INFO [n.f.5.Consumer] Consumer::from /192.168.221.131:47154:Hello
1
s
b

.995 INFO [n.f.l.i.LinkDiscoveryManager] Sending LLDP packets out of all the enabled ports
.412 INFO [n.f.s.Producer] Producer :: Unable to connect to host 192.168.221.132:9999
.121 INFO [n.f.j.JythonServer] Starting DebugServer on :6655

12018-03-18
|2018-03-18

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

image76.png

image77.png

image78.png

image79.png

image80.png

image81.png

