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[bookmark: _bookmark4]ABSTRACT
This research developed a hybrid forecasting technique that integrates Cat Swarm Optimization Clustering (CSO-C) and Particle Swarm Optimization (PSO) algorithms with Fuzzy Time Series (FTS) forecasting model. Cat Swarm Optimization Clustering (CSO-C) which is an algorithm for data classification is adopted at the fuzzification stage to objectively partition the universe of discourse into unequal intervals. Then, disambiguated fuzzy relationships are obtained using Fuzzy Set Grouping (FSG). Finally, Particle Swarm Optimization (PSO) was adopted to optimize the defuzzification phase; by tuning weights assigned to fuzzy sets in a rule. This rule is a fuzzy logical relationship induced from a fuzzy set group (FSG). The clustering and optimization algorithms were implemented in MATLAB. Belgium road yearly accident data, Alabama University yearly student enrolment data, Taiwan future exchange data, University of Maiduguri (UNIMAID) yearly student enrolment data and Jigawa state yearly temperature data were collected and used to evaluate the developed hybrid model. To evaluate the forecasting efficiency of the developed hybrid model, its statistical performance metric of Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) were calculated and compared with previous techniques in the literature. Improvement was achieved in the developed forecasting technique, when compared with the benchmark Fuzzy Time Series (FTS) model of Qiang Song and Brad S. Chissom part I and II in forecasting student enrolment of University of Alabama. Results showed that an RMSE of 6.669 and MAPE result of 0.033%was obtained when compared with the benchmark work of Song and Chissom in student enrolment whose result was an RMSE of 650 and MAPE of 3.22%. There is also an improvement, in comparison to Fuzzy C- Means FTS based model of Yusuf et al (2015) whose result showed an RMSE of 7.02 and MAPE of 0.04%. The application of developed model on Belgium car road accident obtained an RMSE result of 5.931 and MAPE result of 0.346%which is an improvement over FCM based FTS model with RMSE of 19.2 and MAPE of 0.67%.Similarly, on application an RMSE of
2.571 and MAPE of 0.0375%were obtained in the forecast of University of Maiduguri student enrolment while in Jigawa monthly temperature forecast RMSE of 0.357 and MAPE of 0.1% were obtained. Relatively, the points on the plots followed a steady trend with the actual values for enrolment and temperature forecast respectively.
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1.1 [bookmark: _bookmark10][bookmark: _bookmark11][bookmark: _bookmark11]Background

CHAPTER ONE INTRODUCTION

 (
10
)

Fuzzy time series (FTS) techniques are utilized in the fields of science, engineering and general applications to develop prediction models for weather forecasting, predictive control, signal processing, population forecasting, enrolment and finance among others (Panagiotakis et al., 2016).
Forecasting can be defined as the prediction of what is going to happen in the future. Researchers are of the opinion that regardless of the technique used, there can never be a perfect forecast. Meanwhile, the aim of forecasting is either to develop a prediction model that will lead to a more accurate forecasting result or an error reduced result compared to the ones in literature.
There are three classes of forecasting methods namely; qualitative, quantitative and causal (Singh, 2016). Whenever the historical data on a forecasting variable is not available or it is not applicable, the required method is referred to as qualitative forecast (Singh, 2016). This is a method that requires the judgement of an expert on that field or area to develop a forecast. On the other hand, if past information about the variable being forecasted is available and quantifiable, the required method is known as quantitative forecasting (Singh, 2016). In the latter case, forecasts are generated using time series method. The forecasting technique in which historical data is restricted to past values of the variable to be forecasted is called a time series forecasting method (Yusuf et al., 2015). Causal forecasting techniques are predictions methods that are based on the assumptions that the output variable (forecast) has a cause-effect relationship with one or more variables (Anderson et al., 2015).

Forecasting Techniques can further be divided into; probability theory-based (conventional) methods, computational methods, fuzzy time series and hybrid forecasting methods (Eğrioglu et al., 2016).
Time series forecasting problems can be traditionally solved using linear moving average (MA) models, auto-regressive (AR) models and linear auto-regressive integrated moving average (ARIMA) models (Smith & Wunsch, 2015). Such forecasting techniques require larger observations and are unable to deal with prediction problems in which the historical data needs to be represented by linguistic values (Huang et al., 2011; Shah, 2012; Song & Chissom, 1993a). Also, such techniques are confined to linearity assumptions only (Shah, 2012), which introduces large errors in the predicted values.
FTS forecasting techniques have drawn a lot of attention in recent years. However, there are certain issues associated with the development of earlier techniques (Singh, 2016) such as;
i. Inaccurate determination of length of intervals.

ii. Ignorance of repeated fuzzy logic relationships.

iii. Inappropriate assignment of equal importance to fuzzy logic relationships.

iv. Utilization of first order fuzzy logic relationships.

v. Calculation of defuzzified forecast output.

Hence, there is the need for a robust prediction technique that can uncover useful information from little historical data.
Soft Computing (SC) techniques have been utilised to deal with different challenges imposed by FTS modelling techniques (Singh, 2016). The main SC techniques for this purpose include: Artificial Neural Network (ANN), Rough Set (RS) and Evolutionary Computing (EC). Each of

them provides significant solution for addressing domain specific problems (Singh, 2016). The combination of these techniques leads to the development of a hybrid technique, which has more advantage, because it provides robust, cost effective and approximate solution, in comparison to traditional techniques. However, this combination should be computationally inexpensive and simple to implement (Singh, 2016).
Clustering techniques like K-means and fuzzy C-means have been utilized to overcome some subjective decisions made during fuzzification of FTS, such as; interval length, universe of discourse, choice of membership values, to mention but a few. These improve FTS forecasting accuracy. Cat Swarm Optimization (CSO) was developed to limit the shortcoming of premature convergence identified in the afore-mentioned clustering techniques (Chu & Tsai, 2007).
In this research CSO-C will be utilized in the fuzzification stage to objectively determine the interval length, provide objective judgement in choosing number of partitions and show good membership function between the elements in a fuzzy set. PSO will be utilized in the defuzzification stage to assign optimal weights to elements of fuzzy forecasting rules.
1.2 [bookmark: _bookmark12][bookmark: _bookmark12]Statement of Problem

The accuracy of FTS forecasting result is affected by arbitrary decisions such as static interval lengths, parametric partitioning of universe of discourse at fuzzification level, and assigning weights to recurrent fuzzy rules. It has become necessary for an FTS forecasting technique that optimizes the partitions of universe of discourse into unequal interval length, deal with recurrent fuzzy rules and assigns optimal weights to elements of a forecasting rule. As a consequence, employing CSO-C algorithm in fuzzification, Fuzzy Set Groups (FSGs) to generate logical

relationships and PSO algorithm in defuzzification will improve fuzzy time series forecasting accuracy.
1.3 [bookmark: _bookmark13][bookmark: _bookmark13]Aim and Objectives

This research aims to develop a fuzzy time series forecasting model using Cat Swarm Optimization Clustering (CSO-C) and Particle Swarm Optimization (PSO) in order to improve forecasting accuracy. The objectives of the research are as follows:
i. To develop an FTS forecasting technique based on CSO-C and PSO.

ii. To apply the developed FTS forecasting technique to forecast enrolments at University of Alabama, Belgium road accident and Taiwan Future Exchange data sets.
iii. To compare the results obtained using the developed hybrid forecasting technique with results obtained using the FCM based fuzzy time series technique and to validate using university of Maiduguri enrolment data and monthly temperature data of Jigawa state.
1.4 [bookmark: _bookmark14][bookmark: _bookmark14]Scope of the Research

This work covers the development of a hybrid FTS forecasting model which empirically has the capability of forecasting a univariate data that yields improved accuracy of results using RMSE and MAPE as performance metrics. In terms of comparison, the performance of previous forecasting models with the developed model considering three standard data sets namely; Belgium car road accident data, University of Alabama student enrolment data and Taiwan future exchange (TAIFEX) data in literature were considered. Consequently, the model performance was validated using two data sets namely; UNIMAID student enrolment data and Jigawa state monthly temperature data.




2.1 [bookmark: _bookmark15][bookmark: _bookmark16][bookmark: _bookmark16]Introduction

CHAPTER TWO LITERATURE REVIEW


This chapter has two different parts. The first part comprises the fundamental concepts relevant to the thesis and the second part provides a review of similar work.
2.2 [bookmark: _bookmark17][bookmark: _bookmark17]Review of Fundamental Concepts

This part reviews the theoretical background and fundamental concepts relevant to the context of this work.
2.2.1 [bookmark: _bookmark18][bookmark: _bookmark18]Time Series

Time series refers to a record that shows sequence of numerical values collected over successive period (Singh, 2016). The observation is normally spaced at uniform intervals-daily, weekly, quarterly, monthly or yearly.
It can also be defined as a sequence of well-defined observations measured at regular intervals of


time. It is a sequence of n data points,

X1, X2 ,..., Xn , consisting of continuous and non-linear


values changing with time Cheng et al. (2008). Time series forecasting is a mathematical method


for predicting future time series observation,

Xn1 , from historical time series observations,


X1, X2 ,..., Xn .


2.2.2 [bookmark: _bookmark19][bookmark: _bookmark19]Fuzzy Set Theory

This was first introduced in 1965 by Zadeh , fuzzy set theory was designed to mathematically represent and manipulate imprecise (or fuzzy) data. This was developed based on the notion of purely crisp set. In fuzzy set, elements belong to the set with a certain level of membership. It provides formal tools for dealing with uncertainty or vagueness in many problems.

Definition 1: Fuzzy Set; Let Y be a non-empty set and a subset of real numbers. A fuzzy set A,


in Y, the universe of discourse, is characterised by its membership function,

A :Y [0,1] . This


set A in Y is defined as a set of ordered pairs(Sets & Zadeh, 1965).



A {(y,

A  y ) / yY}


(2.1)



If Y {y1, y2 ,....yn}, is a finite set and A is a fuzzy set in Y then,


A  1 / y1  2 / y2  ......n / yn


(2.2)




Where n

is the grade membership of

yn and, n 1, 2,3.......



2.2.2.1 Universe of Discourse: The range of possible values fuzzy sets (linguistic variables) can take is called the universe of discourse. In Fuzzy Time Series (FTS), the universe of discourse,
Y (t), can be different at different times (Song & Chissom, 1993).

2.2.2.2 Membership Function: the membership function which represents a fuzzy set 𝑨̃ is usually denoted by  𝝁𝑨 , for an element 𝒙 of 𝑿, the value 𝝁𝑨 (𝒙) is called the membership degree of 𝒙  in the fuzzy set  𝑨̃ . The membership degree 𝝁𝑨 (𝒙) quantifies the grade of membership of the element 𝒙 to the fuzzy set 𝑨̃.
The membership function of a fuzzy set is a generalization of the indicator function in classical sets.

2.2.3 [bookmark: _bookmark20][bookmark: _bookmark20]Fuzzy time series

Fuzzy time series is a method	of forecasting that uses linguistic mathematical reasoning to model and predict the future from a linguistic time series (Yusuf et al., 2017)
The concept of fuzzy time series was first introduced by Song and Chissom (1993a).

The most important advantage of the fuzzy time series approach is to be able to work with a very small set of data.
Definition 1: Let U be the universe of discourse, where U {u1,u2 ,...,un }. then a fuzzy set Ai
of U can be defined as(Bas et al., 2013):


 (
i
i
i
)Ai  A (u1 ) / u1  A (u2 ) / u2 ,...,  A (un ) / un


(2.3)




 (
A
)Where 
i

is the membership function of the fuzzy set Ai   and A ;U [0,1]. In addition to



 (
i
) (
i
)A (u j ), j1, 2,..., n

denote the generic elements of fuzzy set

Ai ; A (u j )

is the degree of


 (
i
) (
i
)belongingness of u j to Ai ; A (u j )[0,1] .



Definition 2: Fuzzy Time Series; let Y (t)(t ..., 0,1, 2,...),


a subset of real numbers, be the



universe of discourse by which fuzzy sets

fi (t)(i 1, 2,3,...) are defined. If F(t) is a collection of


fi (t)(i 1, 2,3,...), then F(t) is called a fuzzy time series defined on Y (t)(t 1, 2,3,...) (Yusuf et al., 2015).
[image: ][image: ]Definition 3: Fuzzy Logic Relation (FLR); if there exist a fuzzy logic relationship R(t1,t) , such that F(t)  F(t1) R(t1, t) , where represents an operator, then F(t) is said to be caused by F(t1) . The relationship between F(t) and F(t1) is denoted by;

F(t1) F(t)

(2.4)




If F(t1) Ai and F (t)  A j

then

Ai  Aj



Definition 4: Fuzzy Logic Relationship Group (FLRG).

Relationships with the same fuzzy set on the left hand side can further be grouped into a relationship group. Relationship groups are also referred to as Fuzzy Logic Relationship Groups

(FLRG). Suppose that:

Ai  Aj1 , Ai  Aj 2 ,... Ai  Ajn ,

then, they can be grouped into a



relationship group as follows:

Ai  Aj1 , Aj 2 ,..., Ajn (Yusuf et al., 2015).



When forecasting with Fuzzy Time Series (FTS) using real (crisp) historical data, this data must first be converted to fuzzy sets. To define fuzzy sets on the historical data, the universe of discourse, Y (t), the steps are as follows (Song & Chissom, 1993):


i) Find the minimum,

Dmin , and maximum,

Dmax , values of the historical data.


ii) Then, define the universe of discourse, Y (t), as:


Y (t) [ Dmin b0 ,

Dmax b1 ]


(2.5)



where;


b0 and b1 are two positive numbers (buffers).

These buffers, according to Song and Chissom (1993), are arbitrarily assigned to adjust the lower and upper bounds of the range.

2.2.4 [bookmark: _bookmark21][bookmark: _bookmark21]Fuzzy Set Groups (FSGs)

In conventional Fuzzy Time Series (FTS), Fuzzy Logical Relationship Groups (FLRGs) identified, after historical data has been fuzzified, are not unique for some values. This implies that unique observations in a partition will have the same forecasted outputs which cause some mismatches between forecasts and actual historical data. These mismatches affect forecasting accuracy. Fuzzy Set Groups (FSGs) are established against Fuzzy Logical Relationship Groups (FLRGs) to give the historical data a unique set of fuzzy relations (sub patterns) which subsequently are converted to “if - then” statements. The Fuzzy Set Groups (FSGs) algorithm is implemented as follows:
Step 1: combine consecutive fuzzy sets in a pair wise manner { F (t 2), F (t1)}{Ai,t 2 , Ai,t 1 }

to create second – Fuzzy Set Groups (FSGs).

Step 2: if Fuzzy Set Groups (FSGs) are disambiguated, then stop; otherwise extend any ambiguous	fuzzy	set	groups	to	third	–	order	fuzzy	set	groups	in	the	form
{ F (t 3), F (t 2), F (t1)}{Ai,t 3 , Ai,t 2 , Ai,t 1 } to produce disambiguated fuzzy set groups. Step 3: continue the extension process until disambiguated fuzzy set groups are obtained.
Ultimately, the goal of the fuzzy set group algorithm is to obtain fuzzy relationships free of ambiguities(Poulsen, 2009). Ambiguities occur if two or more Fuzzy Set Groups (FSGs) contain the same combination of elements (Eleruja et al., 2012).
2.2.5 [bookmark: _bookmark22][bookmark: _bookmark22]Defuzzification Operator

This is an operator that is mainly used for defuzzifying linguistic variable observations associated with the satisfaction of multiple criteria. The defuzzified output is the weighted sum

of the historical fuzzy sets values,

ai1 , from time t  n to t 1

where n depends on the time


series span defined by (Poulsen, 2009);




 (
n
)
Y t   (at 1wi )
i1

(2.6)


wi 0, 1 , is the strength of fuzzy logical relationship between past fuzzy values (inputs) and future forecasts (outputs). The closer wi is to 1 the stronger the relationship (Poulsen (2009).
2.2.6 [bookmark: _bookmark23][bookmark: _bookmark23]Basic steps of fuzzy time series forecasting

 (
Fuzzify
 
Historical
 
Time
 
Series
 
Data
Start
)The basic steps used in fuzzy time series forecasting according to Song & Chissom (1993) are shown in the flow chart of Figure 2.1:
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Figure 2.1: Flowchart of the Benchmark FTS Approach (Song & Chissom, 1993)


2.2.7 [bookmark: _bookmark24][bookmark: _bookmark24]Data Clustering

It refers to the partitioning of data or objects of the like into subclasses based on similarities. Meanwhile, objects collected in a cluster or group have something in common which is

dissimilar to the objects collected in another cluster or group. The similarity here is often defined by means of a distance norm that is measured among the data vectors themselves, or as a distance from a data vector to some prototypical object or center of the cluster (Bahrami et al., 2018). Data clustering problems have been identified in many applications and domains such as computer vision and pattern recognition (video and image analysis for information retrieval, object recognition, image segmentation, and point clustering), networks (identification of web communities), databases and computing (facing privacy in databases), and statistical physics and mechanics (understanding phase transitions, vibration control, and fracture identification using acoustic emission data) (Panagiotakis et al.., 2016). In clustering technique, there is no information before about the number of cluster and grouping pattern (Santosa & Ningrum, 2009), that is the reason why clustering is included in unsupervised learning.
2.2.8 [bookmark: _bookmark25][bookmark: _bookmark25]Cat Swarm Optimization (CSO)

Cats are highly at alert and curious about their surroundings and the objects moving in their environment. In order to conserve energy, they spend most of their time resting but utilise little time on chasing preys. These behaviours help them in finding   their preys and hunting them down (Bahrami et al., 2018).
With inspiration of hunting pattern, Chu and Tsai (2007) developed Cat Swarm Optimization (CSO) algorithm. CSO is made up of two modes namely: “Seeking mode” which refers to the status of cats when they are resting. Secondly, the “tracing mode” that refers to the state of cats when they are chasing their prey. In the context of CSO, after creating a population of cat; the cats are randomly distributed in an M-dimension solution space, where each cat represent a solution (Bahrami et al., 2018). The population of the cats are divided into two groups. While,

the cats in the first group are at rest they keep an eye on their surroundings (seeking mode). The cats in the second group start moving around to chase their preys (tracing mode).
Following Chu and Tsai (2007), the computational procedures of CSO can be described as follows:
Phase 1: The initial population of cats are created and disperse into the M-dimensional solution space (Xi,d) a velocity in range of the maximum velocity value (ti,d) are randomly assign to each cat.
Phase 2: According to the value of Mixture Ratio (MR), assign each cat a flag to sort them into the seeking or tracing mode process.
Phase 3: Evaluate the fitness value of each cat and save the cat with the best fitness function. The position of the best cat (Xbest) represents the best solution so far.
Phase 4: Based on their flags, apply the cats into the seeking or tracing mode process as described below.
Phase 5: If the termination criteria are satisfied, terminate the process. Otherwise repeat steps 2 through 5.
2.2.8.1 [bookmark: _TOC_250003]Seeking Mode

Following Chu and Tsai (2007), the process is described below.

Phase 1: Make SMP copies of each cati. If the value of SPC is true, SMP-1 copies are made and the current position of the cat remains as one of the copies.

Phase 2: For each copy, according to CDC calculate a new position by using equation (2.6)


(Bahrami et al., 2018)

Xcn 1 SRD R Xc




(2.7)



Where:



Xc is the current position, X cn

new position, and R a random number, which varies between 0


and 1.

Phase 3: Compute the fitness values (FS) for new positions. If all FS values are exactly equal, set the selecting probability to 1 for all candidate points. Otherwise calculate the selecting probability of each candidate point by using equation (2.7).
Phase 4: Using the roulette wheel, randomly pick the point to move to from the candidate points, and replace the position of cati.
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In which:



Pi   Is the probability of current candidate cati, FSi

is the fitness value of the cati,

FSmax is the



maximum value of fitness function,

FSmin minimum value of fitness function,

FSb = FSmax

for



minimization problems and

FSb = FSmin for maximization problems.

2.2.8.2 [bookmark: _TOC_250002]Tracing mode (Movement)

This mode mimics a cat chasing its prey, (Chu & Tsai, 2007). Having found its prey, while resting (seeking mode), the cat decides its movement speed and direction based on the prey’s position and speed. In CSO, the velocity of cat k in dimension d is given by (Bahrami et al.,

2018):


vk ,d ,new  vk ,d ,old  r1  c1  Xbest ,d  Xk ,d 



(2.9)




Where;

vk ,d ,new

is the local position of the cat,

Xbest ,d

is the local position of catk ,

c1 is a constant


and r1 is random value in the range of [0,1].

vk,d = velocity of cat k in dimension d; Xbest,d = position of the cat with the best solution; Xk,d = position of the catk; c1 = a constant; and r1 = a random value in the range of [0,1]. With the use of aforementioned velocity, cats move in M-dimensional space that’s meant for decision. Consequently, new positions are reported. The velocity of cat is set to its maximum; if found to be greater than the maximum velocity. After which, the following equation is used to calculate new position(s) (Bahrami et al., 2018).


Xk ,d ,new  Xk ,d ,old  vk ,d

(2.10)



Where, Xk,d,new= new position of cat k in dimension d,

Xk,d,old= current position of cat k in dimension d, xbest = mean value in a cluster

2.2.9 [bookmark: _bookmark26][bookmark: _bookmark26]Cat Swarm Optimization Clustering (CSO-C)

According to (Santosa & Ningrum, 2009): CSO-C is made up of two parts namely:

i) Clustering of data and

ii) Searching for the best cluster center with the aid of CSO algorithm.

The following are inputs for clustering CSO:

i) Population of data to be used

ii) Number of clusters k

iii) Number of copy

(Santosa & Ningrum, 2009) described the phases of CSO-C as the following:

Phase 1: Defining the initial cluster center: In this phase, k point is chosen arbitrarily from the collected data in order to form the initial cluster center.
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)Phase 2: Grouping data into clusters: Data is imputed into cluster with the closest cluster center. Distance between data and cluster data can be obtained by (Santosa & Ningrum, 2009):


d (x, y) 

x  y	

(2.11)




Phase 3: Calculating the Sum of Squared-Error (SSE): The fitness function of the algorithm can be obtained by:


k
SSE 

( x  m 2 )

	i
i1 xDi

(2.12)



Where:

x  data, member of cluster D mi  cluster center i
k  number of cluster



Phase 4: Clustering optimization with CSO: With regard to this algorithm, the cat is represented by a cluster center, while the new cluster center will be the solution set and is expected to come up with a smaller SSE value than before. A few adjustments are necessary in order to gain efficiency in the application of CSO to CSO-C. The adjustments are:
i. It is best to remove mixture ratio, so that every cat will have to pass the seeking and tracing mode. With this modification, it is expected that the time needed to find the best cluster center will reduce.
ii. If the value of CDC were always assumed to be 100% in the seeking mode, it will allow a change for every dimension of cat copy.
Phase 4.1: Seeking mode: The essence of seeking mode is to search for suitable points around the cluster centres which have possibilities of becoming optimal fitness value. Hence, there is need to define three parameters namely:
i) Seeking Memory Pool (SMP): this will represent the number of copy a cluster have.

ii) Seeking Range of the Selected Dimension (SRD): this declares the mutative ratio, with a value between [0, 1].
iii) Self Position Considering (SPC): it is a Boolean random value (Amjad et al., 2012).

The algorithm for seeking mode in CSO-C is given as follows (Santosa & Ningrum, 2009):

1. Evaluation of the parameter of seeking mode which include; SMP, SRD, SPC

2. For i = 1 to k (number of cluster center), do Copy cluster center (i) position as many as SMP.
Determine j value

Compute the shifting value (SRD*cluster center (i))

3. For m = 1 to SMP, do

Addition or subtraction of cluster centres with shifting value is performed randomly.

*/the output will be (SMP x k) cluster center candidates/*

4. Compute the distance, sub classify data into clusters, and compute SSE

5. Choose a candidate to be the new cluster centre roulette wheel selection

Phase 4.2: Updating SSE and cluster centre

Comparison is carried out between the value(s) of SSE obtained from seeking mode with the previous value of SSE; if seeking SSE value is less than earlier SSE value then the cluster centre resulting from seeking will become the new cluster centre. Conversely, if the value of seeking SSE is greater than or equal to the value of earlier SSE, we use the previous cluster centre.
Phase 4.3: Tracing Mode: The aim of the tracing mode is to shift point of concentration to a better position for obtaining optimal fitness value.
The Tracing Mode algorithm for CSO Clustering is as follows (Bahrami et al., 2018):

1. For i = 1 to k, do Update velocity (i)
Update position (i), get the new cluster center (i)

2. Calculate the distance, grouping data into clusters, and calculate SSE

Phase 4.4: Repeat step 4.2 for tracing SSE and cluster centre: The value of SSE obtained from tracing mode is then compared with the previous value of SSE; if tracing SSE is less than earlier SSE then the cluster centre resulting from tracing will become the new cluster centre. Conversely, if the value of tracing SSE is greater than or equal to earlier SSE, use the previous cluster centre.
Phase 5: Repeat phase 4 until it reaches the stopping criteria: The complete algorithm for CSO-Clustering is shown in Figure 2.2
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)Figure 2.2: Flowchart for CSO-C Algorithm (Santosa & Ningrum, 2009)


2.2.10 [bookmark: _bookmark27][bookmark: _bookmark27]Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is in the class of evolutionary computation (EC) and it is related to genetic algorithm and evolutionary programming, (Kennedy & Eberhart, 1999). The only thing it needs is traditional mathematical operators and in terms of speed and memory requirement it is computationally economical, (Amjad et al., 2012). Empirically, it has been proven to be effective with different kinds of problems not only in the forecasting domain.
Problem optimization in PSO is achieved by having a population of candidate solution, in this process dubbed particles are moved around within a search space in accordance with simple

mathematical formula over the particles position. The particles are also guided towards the best known position in the search space and are updated as better positions are found by other particles (Amjad et al., 2012).
2.2.11 [bookmark: _bookmark28][bookmark: _bookmark28]Performance Indices

Performance indices referred to as performance measure, are also measurement tools used to assess the accuracy or performance of developed forecasting models. In this work, Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) will be utilized as metrics for the bases of comparison between the replicated work model and developed model. Meanwhile, a smaller value of the both metric shows a sign of good forecasting (Singh, 2016).
Root Mean Square Error (RMSE); mathematically represented as (Singh, 2016):
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Mean Absolute Percentage Error (MAPE); also mathematically represented as:
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Where;


xt =Actual Value

𝑥̂=Forecasted Value

n =Number of Forecast

2.3 [bookmark: _bookmark29][bookmark: _bookmark29]Review of Similar Work

Song and Chissom (1993) developed and applied a first-order, time-invariant and time variant FTS models to forecast student enrolment of the University of Alabama using linguistic value historical data. The results obtained where commendable. However, the method required large amount of computation to derive the fuzzy relation.
Chen (1996) presented a work simpler than the work of Song and Chissom (1993). This is because the complicated maximum minimum composition operation was replaced by a simplified arithmetic operation. However, the improved model also had the issue of recurrence number of fuzzy logical relationship group which leads to information lost.
Huarng (2001) work showed the importance of interval length in forecasting using fuzzy time series method. In the work, he established that to obtain effective interval lengths; the heuristic should be set in a way that at least half the fluctuation in the time series will be reflected by the chosen interval length. His work achieved better results in comparison to existing works by the effective choice of interval length. However, there was precautionary measure taken to treat the issue of recurrence number of fuzzy relationship.
Bas et al. (2013) contributed in the fuzzification and defuzzification stages. In fuzzification stage, Differential Evaluation Algorithm was utilized to avoid subjective judgments for determining the interval lengths. Discrete weights were assigned to fuzzy relation that occurred in the defuzzification process. Results obtained showed improved forecasting performance when compared with previous techniques. But, assigning of discrete weights to the recurring fuzzy relation was subjective. Thus, there is need to objectively deal with recurrence of fuzzy relation.

Wang et al. (2013) considered the effect of time variable when partitioning the universe of discourse to interpret temporal intervals. Temporal information was utilized to partition the universe of discourse into intervals with unequal lengths through Gath-Geva clustering. Results showed that the obtained intervals carry well defined semantics. Also, the experimental result showed that the partitioning with temporal information can greatly improve accuracy of forecasting students’ enrolment of Alabama University and Taiwan stock exchange capitalization weighted stock index. However, the method was not sensitive to its parameters.
Chen and Chen (2015) they developed a fuzzy time series forecasting model to forecast stock market prices. Their work was based on granular computing approach with binning-based partition at the fuzzification stage. The model was tested using Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), Dow Jones Industrial Average (DJIA) and other stock index data. Their model performed better than previously existing models.
Qiu et al. (2015) presented a novel high-order fuzzy time series model based on generalized fuzzy logical relationships and automatic clustering. Experimental results showed the technique outperformed previous methods in forecasting enrolment in University of Alabama and Shanghi stock exchange. But, generalizing fuzzy logical relationships can lead to information loss.
Bas et al. (2015) proposed a new hybrid FTS forecasting method by combining high-order fuzzy-time-series forecasting model an autoregressive model. Fuzzy C-means clustering algorithm was utilized in the fuzzification of time series in a Fuzzy Time Series Network (FTSN) then the FTSN was trained by particle swarm optimization. Istanbul stock exchange daily data sets from 2009 to 2013 and the Taiwan stock exchange capitalization weighted stock index data

sets from 1999 to 2004 were used to evaluate the performance of FTSN produces more accurate forecasts for the 11 real-world time-series data sets.
Yusuf et al. (2015) developed a hybrid fuzzy time series model using fuzzy c-means at the first (fuzzification) stage to objectively partition universe of discourse into unequal interval lengths. In the model, particle swarm optimization was adopted at final stage (defuzzification) to assign optimal weights to elements of fuzzy rules. The model outperformed previous forecasting models based on its results. However it was faced with issues of handling outliers and convergence time.
Pei (2015) in this research, a fuzzy time series model was developed to forecast load in electric power system. The universe of discourse was unevenly partitioned using k-means algorithm. The model was based on improved fuzzification method. The results showed an improvement over previous model performance. However, there was no consideration for issue of recurrence number of fuzzy relationship
Lu et al. (2015) in the fuzzification stage, intervals were optimally obtained by continuous adjustment of width to make a more informative interval length. This means that the partitioning was based on interval information granules. The model was experimented on three datasets and better results were obtained in comparison to forecasting models previous performances. There was no explanation about dealing with recurrence number of fuzzy relation.
Wang et al. (2015) the forecasting model was a combination of a modified fuzzy c-means algorithm and granulation. It was applied to solve a time series long term prediction which was validated using data sets such as: daily temperature data, stock index data and wind speed data

among others. The experimental result showed better performance of model than other existing results from existing models. Recurrence number of fuzzy relation was not put to consideration.



Eğrioglu et al. (2016) they developed a hybrid high order fuzzy time series forecasting model. In the model, they used particle swarm optimization and feed forward neural network at the fuzzification stage and determination of fuzzy relationship stage respectively. In real time, the developed model was applied to Istanbul Stock Exchange (ISE) data. The model performed better than previous forecasting models. However, the recurrence of fuzzy relationship still remained an issue.
Huang and Wu (2017) they developed a hybrid fuzzy time series (FTS) model to forecast outpatient visit in which the FTS forecasting was incorporated with empirical mode decomposition to partition universe of discourse, three layer back propagation artificial neural network for the determination of fuzzy relation and particle swarm optimization to optimize the weights and threshold of bpANN. The results shown outperform the performance of previous models. However, the implementation is complex.
Zhang et al. (2017) adapted fuzzy time series model for multivariate forecasting of Shanghai Stock Exchange. Cuckoo search was utilized to partition the training data set into unequal intervals. Then relationships were generated using fuzzy logic relationship group (FLRG). Self adaptive Harmony search was utilized to integrate the secondary factor where necessary in to the forecasting rules for two variables data set. Results showed an improvement in forecasting accuracy. However computational complexities involved might make the model not work effectively for higher variable sets.

In essence, this work proposed a hybrid fuzzy time series forecasting technique to minimize the limitations of the mentioned technique; in order to improve forecasting accuracy. Cat swarm optimization algorithm will be utilized to objectively determine the interval lengths and partition the universe of discourse in the fuzzification stage. Then, Fuzzy Set Group (FSG) will be implemented to generate fuzzy relationships without recurrence. Also, particle swarm optimization will be utilized to assign optimal weights to elements of a fuzzy rule; in the defuzzification stage. CSO-C will be hybridized with PSO on FTS in order to reduce computational cost. Finally, the model will be validated using University of Alabama enrolment data, Belgium road accident data and Taiwan future exchange (TAIFEX) data. Coding the various algorithms used in the forecasting process in MATLAB will reduce computational complexity. MATLAB was chosen in this research, because of the ease to code when compared with other high-level programming languages like C++ or C#.




3.1 [bookmark: _bookmark30][bookmark: _bookmark31][bookmark: _bookmark31]Introduction

CHAPTER THREE MATERIALS AND METHODS



This chapter is focused on the discussion of steps of the methodology and their implementations. The implementation of the methodology is a detailed explanation of the steps itemized in achieving the objectives.
3.2 Materials

The materials utilised in carrying out this work include; Matrix Laboratory application software; MATLAB 2016a, five historical data sets; obtained from the benchmark FTS work of Song and Chissom in 1993 part II, and historical data sets of student enrolment data of Alabama University. Also obtained are Belgium car road accident data from the work of Yusuf et al. (2015), Taiwan Future Exchange (TAIFEX) data from the work of Bas et al. (2015), and student enrolment data for University of Maiduguri which was obtained from the Academic Planning unit of the University. The time series has 18 yearly enrolments between 1976 and 1993. The data can be found in Appendix D and monthly temperature data for Jigawa State, Laptop computer with Intel Core (TM) i3-3250M micro processor, frequency speed rate (2.30GHz) and Random Access Memory (RAM) of 4.00GB, is also utilized. All the data used are shown in the appendices.
3.3 [bookmark: _bookmark32][bookmark: _bookmark32]Methods

This section focuses on discussing steps of the methodology and their implementation. The implementation of the methods is a detailed explanation of the steps itemized in the methodology which include:

1) Development of an FTS forecasting technique based on CSO-C and PSO.

a. Code the fuzzification module, based on CSO-C in MATLAB.

b. Generate disambiguated fuzzy relationship using FSG.

c. Convert fuzzy relationship to “if-then” rules.

d. Code the defuzzification module, based on PSO, in MATLAB.

e. Optimize the elements of the “if-then” rules using the PSO algorithm coded in MATLAB.
f. Generate forecasts.

2) Application of the developed FTS technique to forecast enrolment at University of Alabama, Belgium Car Road Accident, Taiwan Future Exchange (TAIFEX), enrolment of University of Maiduguri, monthly temperature of Jigawa state.
a) Collection and processing of data sets.

b) Apply each data set on (a) to compute partitions and membership degree.

c) Fuzzify data set using ordered partitions and membership degree.

d) Application of 1(b-e).

e) Generate forecasts for data sets.

3) Comparison of the results obtained from the developed FTS technique with that obtained using the previous techniques or methods; with the use of RMSE and MAPE as performance metric.
3.3.1 [bookmark: _bookmark33][bookmark: _bookmark33]Development of an FTS forecasting technique based on CSO-C and PSO.

The aim of integrating Cat Swarm Optimization Clustering (CSO-C) into the fuzzification stage of FTS is to determine empirically the partitions of interval lengths and generate membership values for any type of data sets. This eliminates the need to define universe of discourse and

generates optimal partitions. The algorithm for CSO-C implemented in this work is shown in figure 3.1 below:
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Figure 3.1: Flow Chat for the Fuzzification Module



The flow chat in Figure 3.1 is an illustration of the processes carried out at the fuzzification module of the proposed FTS model. The flow chart of “the computation of cluster centres done by CSO-C” is as shown in Figure 2.2.
The CSO-C parameters are then set. These parameters include Seeking Memory Pool (SMP), Seeking Range of The Selected Dimension (SRD), and Self-Position Considering (SPC). SMP represents how many copy a cluster center has. SRD declares the mutative ratio, with a value between [0, 1]. SPC is a Boolean random value. Table 3.1 shows the CSO-C parameters and their respective specifications.


[bookmark: _bookmark34]Table 3.1: Showing CSO-C parameters and specifications (Santosa & Ningrum, 2009)
	Parameters
	Specifications

	SMP CDC SRD
Const1 r1 Velmax
Number of clusters

Maximum number of
  iterations	
	5

100%

0.2

2

[0,1]

0.9

7

100



[bookmark: _bookmark35] (
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Alabama
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Data
TAIFEX
Data
UNIMAID
Enrolment
 
Data
Jigawa
 
Temperature
Data
m1
1172.10
13055.11
6709.75
743.00
33.20
m2
1380.00
13565.35
6806.00
2925.00
33.70
m3
1432.00
15164.65
6871.00
5800.00
35.50
m4
1478.10
15862.01
6890.00
7238.00
36.90
m5
1574.06
16917.99
6926.00
7687.00
37.50
m6
1616.00
18149.95
6952.75
9884.00
37.70
m7
1644.00
19333.69
7039.00
11410.00
38.10
)The following Table shows the cluster centers obtained for all the data sets: Table 3.2: Cluster Centers Obtained for all Data Sets











As seen from Table 3.2 above that the cluster centers are represented in ascending order in all the data sets.
Next is to define fuzzy sets from partitions generated using membership degree. Fuzzy Set Groups are established against the conventional Fuzzy Logic Relationship Groups (FLRGs) to

deal with recurrence of fuzzy relationships. Subsequently, each FSG is converted into unique “if- then” statements. The snippet for “the establishment of disambiguated FLR” is as follows:
% Step 3.2: Obtain FSG FSG = fuzzySetGroup(F);
“if-then” rules are generated on the bases of the element in the FSG using equation (3.1) below (Yusuf et al., 2015)

if (F(t1)  Ar ,t 1  F(t 2)  Ar ,t 2  ...  F (t n 1) 
Ar ,t n1  F (t n)  Ar ,t n )



(3.1)



then,


wt 1  ? wt 2  ?... wt n1  ? wt n  ?


(3.2)



Where;


wt1 = the weight of the previous historical data point at time (t-n)

t = time (period) of the previous historical data point whose forecast is required.

n = time (period) of the previous historical data point matched in a forecasting rule.

This weight wtn , represents the strength of fuzzy logical relationship between the previous historical data at n and future forecast at t.
Subsequently, the “if-then” rule is tuned using Particle Swarm Optimization (PSO) integrated into the defuzzification phase. PSO algorithm is also implemented in MATLAB 2016. The snippet for the PSO algorithm is shown as follows:

R = (Panagiotakis et al., 2016); for i=1:size(D,1)
R{i} = [];
fuzzySet = FSG(i, find(FSG(i,:)>0)); fuzzySet = fuzzySet(end:-1:1);
if ~isempty(fuzzySet)
mj = umid(fuzzySet)'; ub = ones(size(mj)); % lb = zeros(size(mj));
A = D(i,2);
nvars = numel(mj);
fun = @(r) (sum(r.*mj) - A)^2;
r = particleswarm(fun,nvars,lb,ub); R{i} = r;
x_hat(i,:) = sum(mj .* r); end

 (
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Figure 3.2: Flowchart of the Particle Swarm Optimization Algorithm
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The main PSO parameters applied to produce optimal solutions are; swarm size, maximum iteration, learning factors, particles initial positions, inertial weight factor and target fitness value (Yusuf et al., 2015). Table 3.7 shows the set values of the PSO parameters.

Table 3.3: The PSO Parameters (Yusuf et al., 2015)
	Parameters
	Specifications

	Swarm Size

Maximum Number of Iterations Target Fitness Value as MSE
Min and Max Particles Position Limited to Min. and Max. Vel. Range
Learning Factors C1 and C2 Inertial Coefficient, w
Maximum number of iterations
	5

500

1

[0,1]

[-0.01,0.01]

2

1.4

100



The overall FTS algorithm of the complete CSO-C code developed is shown in Appendix Q.

3.3.2 [bookmark: _bookmark36][bookmark: _bookmark36]Application of the Developed FTS Technique to Forecast Data

In this subsection, the application of the proposed technique to forecasting five data sets is discussed. These data sets include: Belgium car road accident data, Alabama University student enrolment data, Taiwan future exchange data, Maiduguri University student enrolment data and Jigawa state monthly temperature data. The numbers of clusters were set to seven; this is due to the fact that small numbers of partitions affect forecasting rule and accuracy. While, large numbers of partitions diminish the use of fuzzy time series by not allowing adequate number of fluctuations in the process. The maximum number of iteration is set to one hundred as a stopping

 (
33
)
criterion. In each case the code is run thirty times after which the best of all the obtained result is chosen. The tables are provided in Appendix V to Z.
3.3.2.1 [bookmark: _TOC_250001]Forecasting Car Road Accident in Belgium

Forecasting car road accident in Belgium, involves converting the data to linguistic values using defined fuzzy sets and membership degree of each data point computed. The CSO-C algorithm is coded in such a way that one of its outputs is a collection of data points that belong to a cluster centre, based on their maximum degree. Table 3.4 shows the fuzzified training data set for car road accident.
Table 3.4: Fuzzification of Car Road Accident Data
	
Date
	Training Data Set
	Fuzzy Set
	
Date
	Training Data Set
	Fuzzy Set

	1975
	1460
	A4
	1990
	1574
	A5

	1976
	1536
	A5
	1991
	1471
	A4

	1977
	1597
	A6
	1992
	1380
	A2

	1978
	1644
	A6
	1993
	1346
	A2

	1979
	1572
	A6
	1994
	1415
	A3

	1980
	1616
	A7
	1995
	1228
	A1

	1981
	1564
	A6
	1996
	1122
	A1

	1982
	1464
	A4
	1997
	1150
	A1

	1983
	1479
	A3
	1998
	1224
	A1

	1984
	1369
	A3
	1999
	1173
	A1

	1985
	1308
	A2
	2000
	1253
	A1

	1986
	1456
	A4
	2001
	1288
	A2

	1987
	1390
	A2
	2002
	1145
	A1

	1988
	1432
	A3
	2003
	1035
	A1

	1989
	1488
	A4
	2004
	953
	A1



The next step is the generation of fuzzy rules using FSG. Table 3.9 shows the generated fuzzy rule during the first pass.
Table 3.5: First Pass in Generating Fuzzy Rules for Car Road Accident Data
	Data Points
	Date
	Fuzzy Set
	Rule
	Data Points
	Date
	Fuzzy Set
	Rule

	1
	1975
	A4
	#, #
	16
	1990
	A5
	A5, A5

	2
	1976
	A5
	#,A5
	17
	1991
	A4
	A5 ,A6

	3
	1977
	A6
	A5 , A6
	18
	1992
	A2
	A6, A5

	4
	1978
	A6
	A6, A7
	19
	1993
	A2
	A5,A4

	5
	1979
	A6
	A7 , A7
	20
	1994
	A3
	A4,A4

	6
	1980
	A7
	A7 , A6
	21
	1995
	A1
	A4,A5

	7
	1981
	A6
	A6 , A7
	22
	1996
	A1
	A5, A3

	8
	1982
	A4
	A7, A6
	23
	1997
	A1
	A3, A1

	9
	1983
	A3
	A6, A5
	24
	1998
	A1
	A1, A2

	10
	1984
	A3
	A5, A5
	25
	1999
	A1
	A2, A3

	11
	1985
	A2
	A5 , A4
	26
	2000
	A1
	A3, A2

	12
	1986
	A4
	A4, A4
	27
	2001
	A2
	A2, A3

	13
	1987
	A2
	A4, A5
	28
	2002
	A1
	A3, A4

	14
	1988
	A3
	A5, A4
	29
	2003
	A1
	A4, A1

	15
	1989
	A4
	A4 , A5
	30
	2004
	A1
	A1,A1



It can be seen from Table 3.5 that not all fuzzy set groups are unique. Ambiguity occurs for the years (1977-1979); data points 3 through 5, 1981; data point 7, (1983-1984, 1988); data points 9,
10 and 14, (1985 and 1987); data points, (1975, 1982, 1986, 1989, 1991); data points 1, 8, 12, 15

and 17, (1976, 1990); data points 16 and 2, (1992, 1993 and 2001); data points 18, 19 and 27, which is also the same with data points 11 and 13 that is (1985,1987). We also have (1995-2000 and 2002-2004); data points 21 through 26 and 28 through 30.
In order to obtain disambiguated fuzzy rule, the ambiguous fuzzy set groups are extended to the next order, and so on, until unique groups are established, Yusuf et al. (2015). This extension is

achieved by adding the previous available linguistic observation until a higher order fuzzy relationship is attained. Table 3.6 shows the disambiguated fuzzy relationships for car road accident in Belgium.
Table 3.6: Fuzzy Set Group and Respective Optimal Weights for Car Accident Data
	Data points
	Maps
	Optimal weight(s)

	1
	#, #→ A4
	#,#

	2
	#,A5→ A5
	#,#

	3
	A5, A6→ A6
	0.022442, 0.977558

	4
	A5, A6,  A7→ A6
	0.23847,0.0023311, 0.81188

	5
	A7, A7→ A6
	0.98302, 0

	6
	A7, A7 , A6→A7
	0.47619, 0.28692, 0.25285

	7
	A7, A6, A7→ A6
	0.45287, 0.08873, 0.43831

	8
	A6, A7, A6→ A4
	0.93558, 0, 0

	9
	A7, A6,  A5→ A3
	0.081525,0.041537, 0.89499

	10
	A6,A5, A5→ A3
	0.47014, 0.19109, 0.25047

	11
	A5, A5, A4→ A2
	0.34784, 0.14902, 0.44225

	12
	A5,A5, A4, A4→ A4
	0.983841, 0, 0, 0.016159

	13
	A5,A5,A4, A4, A5 →A2
	0.42501,0, 0.5797, 0,0

	14
	A4, A5, A4→ A3
	0.21641, 0.7953, 0

	15
	A5, A4, A5→ A4
	0, 0.076319, 0.96584

	16
	A4, A5, A5→ A5
	0.46637, 0.40469, 0.25499

	17
	A5, A5 ,A6→ A4
	0.54514, 0.24358, 0.21717

	18
	A5, A6, A5 → A2
	0.69881, 0, 0.26337

	19
	A6,A5,A4→ A2
	0 , 0

	20
	A6,A5, A4,A4→A3
	0.32258,0.42598,0.13994,0.082344

	21
	A6,A5,A4,A4,A5→A1
	0.0073059,0, 0.034287, 0.86937

	22
	A5, A3→ A1
	0.15219, 0.73786

	23
	A3, A1→A1
	0.72378, 0.23485

	24
	A1, A2→ A1
	0.044945, 0.955055

	25
	A1, A2, A3→ A1
	0.33401, 0.68015, 0

	26
	A3, A2→A1
	0.99895, 0.025133

	27
	A3, A2, A3→ A2
	0, 0.13372, 0.92348

	28
	A3, A4→A1
	0.93486, 0

	29
	A4, A1→A1
	0.34751, 0.50543

	30
	A1,A1→A1
	0.023115, 0.82616



As seen in table 3.6 the fuzzy relationship for the first two data points cannot be established since FSG approach requires a minimum of two previous linguistic observations to match the current linguistic observation. Hence, no weights are assigned to such fuzzy rules.

3.3.2.2 Forecasting Students Enrolments in University of Alabama

Similarly, forecasting student enrolments in University of Alabama involves converting the data to linguistic values using defined fuzzy sets and membership degree of each data point computed. Table 3.7 shows the fuzzified training data set for student enrolments in University of Alabama.
Table 3.7: Fuzzification of Alabama Student Enrolment Data
	
Date
	Training
Data Set
	
Fuzzy Set
	
Date
	Training
Data Set
	
Fuzzy Set

	1971
	13055
	A1
	1982
	15433
	A3

	1972
	13563
	A2
	1983
	15497
	A3

	1973
	13867
	A2
	1984
	15145
	A3

	1974
	14696
	A3
	1985
	15163
	A3

	1975
	15460
	A3
	1986
	15984
	A4

	1976
	15311
	A3
	1987
	16859
	A5

	1977
	15603
	A4
	1988
	18150
	A6

	1978
	15861
	A4
	1989
	18970
	A7

	1979
	16807
	A5
	1990
	19328
	A7

	1980
	16919
	A5
	1991
	19337
	A7

	1981
	16388
	A5
	1992
	18876
	A7



Then, the linguistic observations are utilized in generating fuzzy rules. Table 3.8 shows the generated fuzzy rules during the first pass for Alabama university student enrolment.




Table 3.8: First Pass in Generating Fuzzy Rules for Alabama University Student Enrolment Data
	Data
Points
	Date
	Fuzzy
Sets
	Rule
	Data
Points
	Date
	Fuzzy
Sets
	Rule

	1
	1971
	A1
	#, #
	12
	1982
	A3
	A6, A5

	2
	1972
	A2
	#, A1
	13
	1983
	A3
	A5, A2

	3
	1973
	A2
	A1 , A1
	14
	1984
	A3
	A2, A2

	4
	1974
	A3
	A1, A1
	15
	1985
	A3
	A2, A2

	5
	1975
	A3
	A1, A2
	16
	1986
	A4
	A2, A2

	6
	1976
	A3
	A2, A2
	17
	1987
	A5
	A2, A4

	7
	1977
	A4
	A2, A2
	18
	1988
	A6
	A4, A6

	8
	1978
	A4
	A2 , A3
	19
	1989
	A7
	A6, A7

	9
	1979
	A5
	A3, A4
	20
	1990
	A7
	A7, A7

	10
	1980
	A5
	A4, A6
	21
	1991
	A7
	A7, A7

	11
	1981
	A5
	A6, A6
	22
	1992
	A7
	A7, A7




As seen in table 3.8 there is occurrence of ambiguity in the years: (1972, 1973); data points 2 and 3, (1974-1976 and 1982-1985); data points 4 through 6 and data points 12 through 15, (1977,
1978, and 1986); data points 7, 8 and 16, (1979, 1980, 1981 and 1987); data points 9, 10, 11 and 17, (1989-1992); data points 19 through 22. The historical observations of the university student enrolment data are converted to linguistic values using defined fuzzy sets and membership degree of each data point computed. This is a common challenge caused by the nature of data set. The solution to avoiding such information loss is to choose a very robust defuzzification approach as implemented in this work. This implies that FLRG is not suitable. Hence, there is need to utilize FSG or disambiguated fuzzy relation. Table 3.9 shows the disambiguated fuzzy relationship for Alabama University student enrolment.

Table 3.9: Fuzzy Set Group and Respective Optimal Weights for Alabama Student Enrolment Data
	Data
  Points	
	Maps
	Optimal Weight(S)	

	1
	#, #→ A1
	#, #

	2
	#, A1 → A2
	#, #

	3
	A1 , A1 → A2
	0 , 0.955055

	4
	A1, A1, A1→A3
	0.85229, 0, 0.20749

	5
	A1, A2→A3
	0, 0.56155

	6
	A1, A2, A2→A3
	0, 0.42887, 0.56148

	7
	A1, A2, A2, A2→A4
	0.9149, 0, 0, 0.18862

	8
	A2 , A3→A4
	0.9743, 0.0257

	9
	A3, A4→A5
	0.052746, 0.947254

	10
	A3, A4, A6→A5
	0, 0, 0.9743

	11
	A6, A6→A5
	0.21978, 0.74883

	12
	A6, A5→A3
	0.14587, 0.79113

	13
	A5, A2→A3
	0, 0.18867

	14
	A5, A2, A2→A3
	0, 0.37964, 0.59998

	15
	A5, A2, A2, A2→A3
	0.80891, 0, 0

	16
	A2, A2, A2, A2→A4
	0, 0.033894, 0

	17
	A2, A4→ A5
	0.95174, 0.13425

	18
	A2, A4, A6→A6
	0.090562,0.28332,0.72234

	19
	A6, A7→A7
	0.090562,0.28332,0.72234

	20
	A6, A7, A7→A7
	0.02116, 0, 0.97884

	21
	A6, A7, A7, A7→A7
	1,0, 0.085242, 0.042223

	 	22	
	A7, A7, A7,  A7→A7	
	0, 0, 0.41191, 0.58313	


3.3.2.3 Forecasting Taiwan future exchange data (TAIFEX)

Forecasting Taiwan future exchange data is also done in similar manner Belgium car road accident and Alabama University student enrolment is carried out. Table 3.10 shows the fuzzified training data set for TAIFEX data.

Table 3.10: Fuzzification of TAIFEX Data.
	Date
	Training Data Set
	Fuzzy Set
	Date
	Training Data Set
	Fuzzy Set

	1
	7552
	A1
	9
	6861
	A3

	2
	6726.5
	A1
	10
	6926
	A5

	3
	6774.55
	A2
	11
	6852
	A3

	4
	6762
	A2
	12
	6890
	A4

	5
	6952.75
	A6
	13
	6871
	A3

	6
	6906
	A5
	14
	6840
	A3

	7
	6842
	A3
	15
	6806
	A2

	8
	7039
	A7
	16
	6787
	A2




The fuzzified dataset is then utilized to generate fuzzy rules. Table 3.11 shows the first pass for generating fuzzy rules for TAIFEX data.
Table 3.11: First Pass in Generating Fuzzy Rules for TAIFEX Data
	Data Points
	Date
	Fuzzy Sets
	Rule
	Data Points
	Date
	Fuzzy Sets
	Rule

	1
	03.08.1998
	A1
	#, #
	9
	21.09.1998
	A3
	A4, A7

	2
	11.09.1998
	A1
	#, A1
	10
	22.09.1998
	A5
	A7, A4

	3
	12.09.1998
	A2
	A1,A1
	11
	23.09.1998
	A3
	A4, A5

	4
	15.09.1998
	A2
	A1, A3
	12
	24.09.1998
	A4
	A6, A4

	5
	16.09.1998
	A6
	A3,A2
	13
	25.09.1998
	A3
	A4,A5

	6
	17.09.1998
	A5
	A2, A6
	14
	28.09.1998
	A3
	A5, A4

	7
	18.09.1998
	A3
	A6, A5
	15
	29.09.1998
	A2
	A4,A4

	8
	19.09.1998
	A7
	A5, A4
	16
	30.09.1998
	A2
	A4,A3



Table 3.15 shows the occurrence of ambiguity on the following dates: (03.08.98, 11.09.98); data points 1 and 2, (12.09.98, 15.09.98); data points 3 and 4, (18.09.98, 21.09.98, 23.09.98, 25.09.98,
and 28.09.98); data points 7, 9, 11, 13 and14, (17.09.98, 22.09.98); data points 6 and 10. Table

3.12 shows the rule generated and weights assigned using FSG and PSO, respectively.

Table 3.12: Fuzzy Set Group and Respective Optimal Weights for TAIFEX Data
	Data
  Points	
	Maps
	Optimal
Weight(S)	

	1
	#, #→ A1
	#, #

	2
	#, A1 → A1
	#, #

	3
	A1,A1→A2
	0.024726, 0.98242

	4
	A1, A3→A2
	0, 0.99808

	5
	A3,A2→A6
	0.074917, 0.95315

	6
	A2, A6→A5
	0.54409, 0.4641

	7
	A6, A5→A3
	0.28698, 0.70344

	8
	A6, A5, A4→A7
	0.987482, 0.012518, 0

	9
	A4, A7→A3
	0.99808, 0

	10
	A7, A4 → A5
	0.0092343, 0.987482

	11
	A4, A5→A3
	0.0987651,0

	12
	A6, A4→A4
	0.004171, 0.995829

	13
	A4,A5→A3
	0.99066, 0.010751

	14
	A4, A5, A4→A3
	0.42951, 0.56504, 0

	15
	A4,A4→A2
	0.99198,0

	 	16	
	A4,A3→A2	
	0.0017454, 0.995829 



Table 3.12 shows the disambiguated fuzzy relationships and the weights assigned for the TAIFEX data set.
3.3.2.4 Forecasting Student Enrolments in University of Maiduguri

Here, forecasting student enrolments in University of Maiduguri (UNIMAID) data from 1976 to 1993 is considered. The obtained data is shown in Appendix D. As seen there are no missing observations for the range of years. Table 3.13 shows fuzzified training dataset for UNIMAID student enrolment data.

Table 3.13: Fuzzified Data for UNIMAID
	
Date
	Training Data Set
	Fuzzy Set

	1976
	743
	A1

	1977
	1128
	A1

	1978
	1882
	A2

	1979
	2500
	A2

	1980
	2925
	A2

	1981
	3251
	A2

	1982
	4561
	A3

	1983
	5329
	A3

	1984
	5719
	A3

	1985
	5800
	A3

	1986
	6168
	A3

	1987
	6711
	A4

	1988
	7238
	A4

	1989
	7687
	A5

	1990
	7960
	A5

	1991
	8302
	A5

	1992
	9884
	A6

	1993
	11410
	A7




Table 3.14 shows the first pass of generating fuzzy rule for UNIMAID data.

Table 3.14: First Pass in Generating Fuzzy Rules for UNIMAID Student Enrolment Data
	Data Points
	Date
	Fuzzy Sets
	Rule
	Data Points
	Date
	Fuzzy Sets
	Rule

	1
	1976
	A1
	#,#
	10
	1985
	A3
	A3, A3

	2
	1977
	A1
	#, A1
	11
	1986
	A3
	A3, A3

	3
	1978
	A2
	A1, A1
	12
	1987
	A4
	A3, A3

	4
	1979
	A2
	A1, A2
	13
	1988
	A4
	A3, A4

	5
	1980
	A2
	A2, A2
	14
	1989
	A5
	A4, A4

	6
	1981
	A2
	A2, A2
	15
	1990
	A5
	A5, A5

	7
	1982
	A3
	A2, A2
	16
	1991
	A5
	A5, A5

	8
	1983
	A3
	A2, A3
	17
	1992
	A6
	A5,A5

	9
	1984
	A3
	A3, A3
	18
	1993
	A7
	A5,A6



It can be seen from table 3.14 that the fuzzy set groups that are not unique include: (1976, 1977); data points 1 and 2, (1978-1981); data points 3 through 6, (1982-1986); data pints 7 through 11,
(1987, and 1988); data points 12 and 13, (1989-1991); data points 14, 15 and 16.

Table 3.15: Fuzzy Set Group and Respective Optimal Weights for UNIMAID Data
	Data Points
	Maps
	Optimal Weight(S)

	1
	#,# → A1
	#, #

	2
	#, A1 → A1
	#, #

	3
	A1, A1→ A2
	0.654322, 0.345678

	4
	A1, A2→ A2
	0.54268,0.71685

	5
	A1, A2, A2→A2
	0, 0.654322, 0.457320

	6
	A1, A2, A2, A2 →  A2
	0.0076546,0.654382,0.10951,0.54268,

	7
	A2, A2, A2, A2 → A3
	0.013258,0.45732,0.653578,0.73428

	8
	A2, A3 → A3
	0.8431, 0.49361

	9
	A2,A3, A3→ A3
	0.456781 , 0.322459 , 0.98603

	10
	A2, A3, A3, A3 → A3
	0.875324,0.555671, 0.234500,0.53987

	11
	A2, A3, A3, A3, A3→ A3
	0,0.12576,0.025119,0.232678,0.45530

	12
	A3, A3, A3, A3, A3 → A4
	0.288830, 0, 0.31378, 0.55446, 0.984230

	13
	A3, A4 → A4
	0, 0.4563210

	14
	A4, A4→A5
	0.28253, 0.779500

	15
	A4, A5, A5 → A5
	0.037718, 0.675431

	16
	A4, A5, A5→ A5
	0.074139, 0.026097, 0.984100

	17
	A5, A5,A5→ A6
	0.86899, 0.18538, 0.23143

	18
	A5,A6→ A7
	0.6744321, 0.3766734



Table 3.15 shows the generated rule and assigned weight using FSG for UNIMAID student enrolment dataset.
3.3.2.5 Forecasting Monthly Temperature of Jigawa state

Forecasting monthly temperature data of Jigawa state from 1982 to 2013 is considered in this subsection. Table 3.16 shows the fuzzified temperature data for Jigawa state, for the month of July.
Table 3.16: Fuzzified Monthly Temperature Data for Jigawa (July)
	Date
	Training Data Set
	Fuzzy Set
	Date
	Training Data Set
	Fuzzy Set

	1982
	36.2
	A1
	1998
	36.9
	A7

	1983
	34.8
	A1
	1999
	37.8
	A4

	1984
	36.9
	A2
	2000
	38.4
	A5

	1985
	35.6
	A2
	2001
	36.7
	A5

	1986
	36.4
	A2
	2002
	38.9
	A5

	1987
	33.7
	A2
	2003
	38.1
	A5

	1988
	35.0
	A3
	2004
	38
	A6

	1989
	35.3
	A3
	2005
	36.7
	A2

	1990
	36.3
	A3
	2006
	39.5
	A2

	1991
	37.0
	A4
	2007
	37.3
	A3

	1992
	35.5
	A4
	2008
	36.6
	A3

	1993
	35.2
	A4
	2009
	36.9
	A3

	1994
	35.8
	A5
	2010
	37.4
	A3

	1995
	34.5
	A4
	2011
	37.7
	A3

	1996
	32.4
	A5
	2012
	36.1
	A5

	1997
	33.2
	A5
	2013
	37.5
	A6



Table 3.17 shows the first pass of generating fuzzy rule for monthly temperature data of Jigawa state.


Table 3.17: First Pass in Generating Fuzzy Rules for Jigawa State Monthly Temperature Data
	DATA POINTS
	DATE
	FUZZY SETS
	RULE
	DATA POINTS
	DATE
	FUZZY SETS
	RULE

	1
	1982
	A1
	#,#
	17
	1998
	A4
	A1, A1

	2
	1983
	A1
	#, A1
	18
	1999
	A6
	A1, A4

	3
	1984
	A4
	A3, A3
	19
	2000
	A7
	A4, A6

	4
	1985
	A3
	A3, A4
	20
	2001
	A4
	A6, A7

	5
	1986
	A4
	A4, A3
	21
	2002
	A7
	A7, A4

	6
	1987
	A2
	A3,A4
	22
	2003
	A7
	A4, A7

	7
	1988
	A3
	A4, A2
	23
	2004
	A7
	A7 ,A7

	8
	1989
	A3
	A2, A3
	24
	2005
	A4
	A7, A7

	9
	1990
	A4
	A3, A3
	25
	2006
	A7
	A7, A4

	10
	1991
	A4
	A3 ,A4
	26
	2007
	A5
	A4, A7

	11
	1992
	A3
	A4, A4
	27
	2008
	A4
	A7, A5

	12
	1993
	A3
	A4, A3
	28
	2009
	A4
	A5, A4

	13
	1994
	A3
	A3, A3
	29
	2010
	A5
	A4, A4

	14
	1995
	A2
	A3, A3
	30
	2011
	A6
	A4, A5

	15
	1996
	A1
	A3, A2
	31
	2012
	A3
	A5, A6

	16
	1997
	A1
	A2, A1
	32
	2013
	A5
	A6, A3



It can be seen from Table 3.17 that, there is ambiguity in (1982, 1983, 1996 and 1997); data points 1, 2, 15 and 16, (1987, 1995); data points 6 and 14, (1985, 1988, 1989, 1992, 1993, 1994
and 2012); data points 4, 7, 8, 11, 12, 13 and 31, (1984, 1986, 1990, 1991, 1998, 2001, 2005,

2008 and 2009); data points 3, 5, 9, 10, 17, 20, 24, 27 and 28, (2007, 2010 and 2013); data points

26, 29, 32, (1999, 2011); data points 18 and 30, (2000, 2002, 2003, 2004 and 2006); data points

19, 21, 22, 23 and 25. Table 3.18 shows the assigned weights and rules generated using FSG and PSO, respectively for Jigawa Monthly Temperature Data.


Table 3.18: Fuzzy Set Group and Respective Optimal Weights for Jigawa Monthly Temperature Data
	Data Points
	Maps
	Optimal Weight(S)

	1
	#,# →A1
	#, #

	2
	#, A1 → A1
	#, #

	3
	A3, A3 → A4
	0.96888, 0.070553

	4
	A3, A3, A4 → A3
	0.02464, 0.22839, 0.00271

	5
	A3, A4, A3→  A4
	0.22839, 0.1745, 0.61559

	6
	A4, A3,A4 → A2
	0.96888, 0.31326, 0.61191

	7
	A4, A2 →  A3
	0.061413, 0.97133

	8
	A2, A3→ A3
	0.013474, 0.98158

	9
	A2, A3, A3 → A4
	0.18357, 0.58789, 0.26039

	10
	A2, A3, A3 ,A4 →  A4
	0.230846, 0.042254, 0.070553

	11
	A3, A4, A4 → A3
	0.09823, 0.00237, 0.10643

	12
	A4, A4, A3 → A3
	0.09832, 0.36008, 0.61727

	13
	A4, A3, A3 → A3
	0.224562, 0.004632, 0.0084507

	14
	A3, A3, A3 → A2
	0.02245, 0.31325, 0.97183

	15
	A3, A2 → A1
	0.49387, 0.44118

	16
	A2, A1 →  A1
	0.02321, 0.61559

	17
	A1, A1→ A4
	0.11145, 0.042264

	18
	A1, A4 →  A6
	0.03267, 0.00256

	19
	A4, A6 →  A7
	0.01897, 0.027108

	20
	A6, A7 →  A4
	0.57553, 0.39372

	21
	A6, A7, A4 → A7
	0.37410, 0.09821, 0.67198

	22
	A6, A7, A4, A7 → A7
	0.1745, 0.061413, 0.97133, 0.49387

	23
	A4, A7 ,A7 →  A7
	0.29990, 0.004599, 0.46357

	24
	A7, A7, A7 → A4
	0.082003, 0.88125, 0.92345

	25
	A7, A7, A4 → A7
	0.046111, 0.17091, 0.84638

	26
	A7, A7, A4, A7 →  A5
	0.059782, 0.033079, 0.15022, 0.04442

	27
	A7, A5 →  A4
	0.9760, 0.44421

	28
	A5, A4 →  A4
	0.00236, 0.72221

	29
	A5, A4, A4 → A5
	0.99733, 0.00228, 0.92540

	30
	A4, A5 →  A6
	0.23716, 0.77197

	31
	A5, A6 →  A3
	0.65246, 0.30856

	32
	A6, A3→ A5
	0.55816, 0.46357


[bookmark: _bookmark37]3.4 Comparison of Results Obtained with Existing Techniques

The performance of the developed model is evaluated using the performance measures of RMSE and MAPE as shown in equations (2.8) and (2.9) respectively.

[bookmark: _bookmark38]CHAPTER FOUR RESULTS AND DISCUSSIONS

4.1 [bookmark: _bookmark39][bookmark: _bookmark39]Introduction

This chapter presents the obtained results for the developed Fuzzy Time Series (FTS) model. Also presented are the results and performances of the benchmark FTS approach of Song and Chissom (1993) and Fuzzy C-Means (FCM) based FTS approach of Yusuf et al. (2015), on five data sets.
4.2 [bookmark: _bookmark40][bookmark: _bookmark40]Forecasting Results for Car Road Accident

The results are obtained by utilizing the optimal weights, shown in Table 3.6. Table 4.1 shows the result of forecasts obtained for car road accident in Belgium.
[bookmark: _bookmark41]Table 4.1: Obtained Model Forecasts Results for Car Road Accident Data

	Year
	Actual
	Forecasted
	Year
	Actual
	Forecasted

	
	Value
	Value
	
	Value
	Value

	1974
	1574
	-
	1990
	1574
	1580

	1975
	1460
	-
	1991
	1471
	1462

	1976
	1536
	1538
	1992
	1380
	1382

	1977
	1597
	1608
	1993
	1346
	1338

	1978
	1644
	1646
	1994
	1415
	1417

	1979
	1572
	1560
	1995
	1228
	1229

	1980
	1616
	1607
	1996
	1122
	1123

	1981
	1564
	1572
	1997
	1150
	1148

	1982
	1464
	1463
	1998
	1224
	1223

	1983
	1479
	1487
	1999
	1173
	1177

	1984
	1369
	1371
	2000
	1253
	1252

	1985
	1308
	1315
	2001
	1288
	1288

	1986
	1456
	1447
	2002
	1145
	1152

	1987
	1390
	1390
	2003
	1035
	1041

	1988
	1432
	1434
	2004
	953
	945

	1989
	1488
	1484
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)As seen from Table 4.1 there was no forecast for the first two years (1974and1975). This is because at least two preceding historical data are required to forecast any future observation. Also the Fuzzy Set Groups (FSG) associated with the third and fourth future observations were extended to the third and fourth order, respectively to remove ambiguity. The plot for the forecasted training data set and actual training data set is shown in Figure 4.1.



























[bookmark: _bookmark42]4.1: Plot of Actual and Forecasted Belgium Car Road Accident Data Set



As seen from Figure 4.1, the actual and forecasted plots have very similar trends all through. This implies that the developed FTS model can predict the trends in the given observations.

Table 4.2 shows the results of evaluating on the developed Fuzzy Time Series Model of students enrolment data of Alabama University..
[bookmark: _bookmark43]Table 4.2: Obtained Model Forecasts for Student Enrolment Data of Alabama University

	
	Actual
	Forecasted
	
	Actual
	Forecasted

	Year
	Value
	Value
	Year
	Value
	Value

	1971
	13055
	-
	1982
	15433
	15300

	1972
	13563
	-
	1983
	15497
	15176

	1973
	13867
	14701
	1984
	15145
	15290

	1974
	14696
	14701
	1985
	15163
	15091

	1975
	15460
	15247
	1986
	15984
	16056

	1976
	15311
	15204
	1987
	16859
	17045

	1977
	15603
	15966
	1988
	18150
	18521

	1978
	15861
	15484
	1989
	18970
	19403

	1979
	16807
	16841
	1990
	19328
	19018

	1980
	16919
	17031
	1991
	19337
	19117

	  1981	
	16388	
	16528	
	1992	
	18876	
	19102	



Similarly, Table 4.2 has no forecast for two years (1971and1972); due to the fact that at least two historical data are required to forecast any future observation. To further verify the developed FTS model, a plot for the forecasted data set and actual data set for Alabama University Student Enrolment is shown in Figure 4.2.
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)Figure 4.2: Plot of Actual and Forecasted Alabama University Student Enrolment Data Set

As seen from Figure 4.2, the forecasted plot and the actual observations plot follow a similar trend; except for mismatch in the years 1977, 1983 and 1990. The points of mismatch on the plots of actual enrolment and forecasted enrolment could be as a result of the parameters set for the CSO-C algorithm or as a result of outliers in the data set. Table 4-3 shows the results obtained when TAIFEX data is applied on the Developed Fuzzy Time Series (FTS) model.

[bookmark: _bookmark45]Table 4.3: Developed Model Forecasts for TAIFEX Data
	
	Date
	Actual Values
	Forecasted
	
	Date
	Actual
	Forecasted

	
	
	
	Values
	
	
	Values
	Values

	1
	11.09.1998
	6726.50
	-
	9
	22.09.1998
	6926.00
	6969.37

	2
	12.09.1998
	6774.55
	-
	10
	23.09.1998
	6852.00
	6837.16

	3
	15.09.1998
	6762.00
	6727.52
	11
	24.09.1998
	6890.00
	6844.69

	4
	16.09.1998
	6952.75
	6891.48
	12
	25.09.1998
	6871.00
	6909.2

	5
	17.09.1998
	6906.00
	6963.83
	13
	28.09.1998
	6840.00
	6810.65

	6
	18.09.1998
	6842.00
	6820.84
	14
	29.09.1998
	6806.00
	6809.38

	7
	19.09.1998
	7039.00
	7091.37
	15
	30.09.1998
	6787.00
	6823.89

	8
	21.09.1998
	6861.00
	6927.67
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)Similarly, the first two indices have no forecast due to the necessary extension for a more accurate forecast. The plot for the forecasted data set and actual data set for TAIFEX is shown in Figure 4.3.




















[bookmark: _bookmark46]Figure 4.3: Plot of Actual and Forecasted Values for TAIFEX Data Set

Similarly, the actual and the forecasted plots are very similar; except for indices 9, 10, 11, and 12.Table 4.4 shows the forecast obtained when the developed fuzzy time series model is applied on UNIMAID student enrolment data set.
[bookmark: _bookmark47]Table 4.4: Developed Model Forecasting UNIMAID Student Enrolment Data
	

Year
	Actual

Data
	Forecasted

Data
	

Year
	Actual

Data
	Forecasted

Data

	1976
	743
	-
	1985
	5800
	5803

	1977
	1128
	-
	1986
	6168
	6163

	1978
	1882
	1883
	1987
	6711
	6697

	1979
	2500
	2789
	1988
	7238
	7254

	1980
	2925
	2918
	1989
	7687
	7651

	1981
	3251
	3274
	1990
	7960
	8022

	1982
	4561
	4523
	1991
	8302
	8273

	1983
	5329
	5351
	1992
	9884
	9933

	1984
	5719
	5722
	1993
	11410
	11334



Table 4.4 also has no forecast for the years (1976-1977). The plot for the forecasted data set and actual data set for UNIMAID Student Enrolment is shown in Figure 4.4.
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As seen in Figure 4.4, mismatch only occurred at years 1978 and 1979. But the forecasted and actual plots have very similar patterns.
[bookmark: _bookmark49]Table 4.5: Developed Model Forecasts for Jigawa Monthly Temperature Data
	
Year
	Historical
Data
	Forecasted
Data
	
Year
	Historical
Data
	Forecasted
Data

	1982
	30.7
	-
	1998
	32.0
	32.2

	1983
	31.5
	-
	1999
	33.0
	32.4

	1984
	32.8
	33.0
	2000
	34.9
	35.2

	1985
	28.6
	28.4
	2001
	32.3
	32.7

	1986
	29.0
	28.6
	2002
	34.2
	34.5

	1987
	34.2
	34.3
	2003
	34.1
	33.8

	1988
	28.0
	27.5
	2004
	35.9
	35.5

	1989
	29.3
	29.8
	2005
	32.4
	32.4

	1990
	29.1
	29.6
	2006
	35.8
	35.4

	1991
	29.8
	29.9
	2007
	31.9
	32.0

	1992
	28.9
	28.4
	2008
	30.9
	31.4

	1993
	30.7
	30.4
	2009
	33.2
	33.8

	1994
	28.3
	28.5
	2010
	29.5
	29.3

	1995
	28.9
	28.8
	2011
	34.9
	34.8

	1996
	29.0
	29.2
	2012
	29.4
	29.8

	1997
	30.0
	29.9
	2013
	32.6
	32.0



Table 4.5 shows the results obtained when the Developed model was applied to monthly temperature data of Jigawa state.
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[bookmark: _bookmark50]Figure 4.5: Plot of Actual and Forecasted Jigawa Monthly Temperature Data Set

As seen in Figure 4.5, the plots of the actual and forecasted observations showed very similar pattern.
4.3 [bookmark: _bookmark51][bookmark: _bookmark51]Validation

In order to verify the forecasting accuracy of the Developed Fuzzy Time Series (FTS) model, its performance measures of Root Mean Square Error (RMSE) and Mean Absolute Percentage Error

(MAPE) are determined. Subsequently, these measures for the Developed model are compared with those of some existing models.
[bookmark: _bookmark52]Table 4.6: Calculation of RMSE and MAPE of Forecast for Belgium Car Road Accident Data
	
S/No.
	
Date
	Actual
Data
	Forecasted
Data
	
SEt
	
AEt (*100%)

	1
	1974
	1574
	-
	-
	-

	2
	1975
	1460
	-
	-
	-

	3
	1976
	1536
	1542
	36
	0.003915

	4
	1977
	1597
	1588
	81
	0.005636

	5
	1978
	1644
	1650
	36
	0.003650

	6
	1979
	1572
	1560
	144
	0.007634

	7
	1980
	1616
	1607
	81
	0.005569

	8
	1981
	1564
	1572
	64
	0.005115

	9
	1982
	1464
	1463
	1
	0.000683

	10
	1983
	1479
	1487
	64
	0.005409

	11
	1984
	1369
	1371
	4
	0.001461

	12
	1985
	1308
	1315
	49
	0.005352

	13
	1986
	1456
	1447
	81
	0.006181

	14
	1987
	1390
	1390
	0
	0.00000

	15
	1988
	1432
	1434
	4
	0.001397

	16
	1989
	1488
	1484
	16
	0.002688

	17
	1990
	1574
	1580
	36
	0.003812

	18
	1991
	1471
	1462
	81
	0.006118

	19
	1992
	1380
	1382
	4
	0.001449

	20
	1993
	1346
	1338
	64
	0.005944

	21
	1994
	1415
	1417
	4
	0.001413

	22
	1995
	1228
	1229
	1
	0.000814

	23
	1996
	1122
	1123
	1
	0.000891

	24
	1997
	1150
	1148
	4
	0.001739

	25
	1998
	1224
	1223
	1
	0.000817

	26
	1999
	1173
	1177
	16
	0.003410

	27
	2000
	1253
	1252
	1
	0.000798

	28
	2001
	1288
	1288
	0
	0.00000

	29
	2002
	1145
	1152
	49
	0.006114

	30
	2003
	1035
	1041
	36
	0.005797

	31
	2004
	953
	945
	64
	0.008395

	
	
	
	  RMSE=5.931	
	MAPE=.34607%  



These existing models include; Chen’s (1996) model and Yusuf et al (2015). Chen’s (1996) model and Yusuf et al (2015) are training models.
To determine the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) of these models, equations (2.8) and (2.9) respectively utilized. Table 4-6 shows the calculation of the performance measures for the Developed fuzzy time series model.

AEt is the Absolute Error and SEt is the Squared Error. The result shows that statistical measures of RMSE=5.931 and MAPE=0.34607% were obtained using the Developed model. Table 4.7 shows the comparison between the performance of the Developed model and that of some previously developed FTS models in forecasting car road accident in Belgium.
[bookmark: _bookmark53]Table 4.7: Comparison between the Developed Model and that of Previous Works for Accident Data
	
	Performance Index
 	

	Methods
	

	
	RMSE
	MAPE (%)

	Jilani et al (2007)
	83.12
	5.06

	Egrioglu et al (2010)
	85.35
	5.25

	Uslu et al (2014)
	41.61
	2.29

	Yusuf et al (2015)
	19.2
	0.67

	Developed FTS model
	5.93
	0.34




As seen in Table 4.7, the developed FTS model outperforms other previous models in terms of accuracy. Figure 4.6 shows the comparison plot between the Developed FTS forecasts and that of Yusuf et al (2015).
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[bookmark: _bookmark54]Figure 4.6: Plot of Actual and Forecasted values for Car Road Accident

As seen in Figure 4.6 the proposed (developed) models curve in grey dash curve followed the rise and fall pattern of the actual curve in black thick continuous curve.

 (
1700
1600
1500
1400
Actual
 
Data
Jilani
 
et al
1300
1200
Egrioglu
 
et
 
al
Uslu et al
 
Yusuf
 
et
 
al
Developed
 
FTS
 
model
1100
1000
900
1970
1975
1980
1985
1990
1995
2000
2005
2010
)



























[bookmark: _bookmark55]Figure 4.7: Comparison between the Developed Model and that of Previous Works for Car Road Accident
Figure 4.7 shows the actual curve in continuous black curve and the developed models curve in black dotted lines following the pattern of the actual curve. Table 4.8 shows the calculation of the performance measures for the Developed fuzzy time series model when used to forecast for the enrolment in University of Alabama.

[bookmark: _bookmark56]Table 4.8: Calculation of RMSE and MAPE of Forecast for Alabama University Student Enrolment Data
	
Date
	Actual Data
	Forecasted Data
	
SEt
	
AEt

	1971
	13055
	-
	-
	-

	1972
	13563
	-
	-
	-

	1973
	13867
	13874
	49
	0.0005048

	1974
	14696
	14701
	25
	0.0003402

	1975
	15460
	15453
	49
	0.00045278

	1976
	15311
	15307
	16
	0.00026125

	1977
	15603
	15611
	64
	0.00051272

	1978
	15861
	15860
	1
	0.00006305

	1979
	16807
	16809
	4
	0.000119

	1980
	16919
	16921
	4
	0.00011821

	1981
	16388
	16393
	25
	0.0003051

	1982
	15433
	15430
	9
	0.00019439

	1983
	15497
	15493
	16
	0.00025811

	1984
	15145
	15150
	25
	0.00033014

	1985
	15163
	15152
	121
	0.00072545

	1986
	15984
	15985
	1
	0.00006256

	1987
	16859
	16858
	1
	0.00005932

	1988
	18150
	18162
	144
	0.00066116

	1989
	18970
	18961
	81
	0.00047443

	1990
	19328
	19340
	144
	0.00062086

	1991
	19337
	19349
	144
	0.00062057

	1992
	18876
	18882
	36
	0.00031786

	
	
	  RMSE = 6.669	
	MAPE = 0.033%  



The result shows that statistical measures of RMSE=6.669 and MAPE=0.033 % were obtained using the Developed model. Table 4.9 shows the comparative result between the Developed FTS model and previous models.

[bookmark: _bookmark57]Table 4.9: Comparison between the Developed Model and that of Previous Works for Alabama University Student Enrolment Data
	
	Performance Index
 	

	Methods
	

	
	RMSE
	MAPE (%)

	Song & Chissom (1993)
	650
	3.22

	Chen (1996)
	638
	3.11

	Haurng et al (2006)
	478
	2.20

	Huarng (2001)
	476
	2.45

	Uslu et al (2014)
	178
	0.90

	Yusuf et al (2015)
	7.02
	0.04

	Developed FTS model
	5.06
	0.046
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)As seen in Table 4.9, the developed model outperformed other previous FTS models except for Yusuf et al. (2015); in terms of MAPE. This implies that Yusuf et al (2015) is a better training model than the developed FTS model; for the students’ enrolment in University of Alabama. This can be clearly seen in Figure 4.8.















[bookmark: _bookmark58]Figure 4.8: Comparison of Models for Alabama Students Enrolment

Figure 4.8 shows the plot of the developed (proposed) model in comparison with that of Yusuf et al (2015).
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[bookmark: _bookmark59]Figure 4.9: Comparison between the Developed Model and that of Previous Works for Alabama University Student Enrolment Data

As seen in figure 4.9 the actual data curve is in purple color and the developed model curve is in a black dotted curve, While Yusuf et al is in red dotted curve.
Table 4.10 shows the calculation of the performance measures for the Developed FTS model when utilized to forecast TAIFEX data.

[bookmark: _bookmark60]Table 4.10: Calculation of RMSE and MAPE of Forecast for TAIFEX Data
	
S/No.
	
Date
	Actual Data
	Forecasted Data
	
SEt
	
AEt

	1
	04.08.1998
	6726.5
	-
	-
	-

	2
	05.08.1998
	6774.55
	-
	-
	-

	3
	06.08.1998
	6762
	6727.52
	1188.8704
	0.005099

	4
	07.08.1998
	6952.75
	6891.48
	3754.0129
	0.008812

	5
	10.08.1998
	6906
	6963.83
	3344.3089
	0.008374

	6
	11.08.1998
	6842
	6820.84
	447.7456
	0.003093

	7
	12.08.1998
	7039
	7091.37
	2742.6169
	0.00744

	8
	13.08.1998
	6861
	6927.67
	4444.8889
	0.009717

	9
	14.08.1998
	6926
	6969.37
	1880.9569
	0.006262

	10
	15.08.1998
	6852
	6837.16
	220.2256
	0.002166

	11
	17.08.1998
	6890
	6844.69
	2052.9961
	0.006576

	12
	18.08.1998
	6871
	6909.2
	1459.24
	0.00556

	13
	19.08.1998
	6840
	6810.65
	861.4225
	0.004291

	14
	20.08.1998
	6806
	6809.38
	11.4244
	0.000497

	15
	21.08.1998
	6787
	6823.89
	1360.8721
	0.005435

	
	
	
	  
	RMSE=43.868	
	MAPE=0.56603%  



Similarly, the result shows that statistical measure of RMSE=43.868 and MAPE=0.56603 % were obtained using the Developed model.

Table 4.11 shows the calculation of the performance measures for the Developed FTS model when utilized to forecast UNIMAID student enrolment.

[bookmark: _bookmark61]Table 4.11: Calculation of RMSE and MAPE of Forecast for UNIMAID Student Enrolment Data
	Date
	Actual Data
	Forecasted Data
	SEt
	AEt

	1976
	743
	-
	-
	-

	1977
	1128
	-
	-
	-

	1978
	1882
	1883
	1
	0.00053135

	1979
	2500
	2500
	0
	0

	1980
	2925
	2924
	1
	0.00034188

	1981
	3251
	3252
	1
	0.0003076

	1982
	4561
	4559
	4
	0.0004385

	1983
	5329
	5332
	9
	0.00056296

	1984
	5719
	5720
	1
	0.00017486

	1985
	5800
	5804
	16
	0.00068966

	1986
	6168
	6167
	1
	0.00016213

	1987
	6711
	6708
	9
	0.00044703

	1988
	7238
	7242
	16
	0.00055264

	1989
	7687
	7686
	1
	0.00013009

	1990
	7960
	7964
	16
	0.00050251

	1991
	8302
	8298
	16
	0.00048181

	1992
	9884
	9885
	1
	0.00010117

	1993
	11410
	11405
	25
	0.00043821

	
	
	RMSE = 2.571
	MAPE = 0.03749%



As seen in Table 4.11, the result shows a RMSE of 2.571 and MAPE of 0.03749%.

Table 4.12 shows the calculation of the statistical measures for the Developed FTS model when applied on monthly temperature in Jigawa state.


[bookmark: _bookmark62]Table 4.12: Calculation of RMSE and MAPE of Forecast for Jigawa Monthly TemperatureData
	Year
	Actual
Data
	Forecasted
Data
	SEt
	AEt

	1982
	30.7
	-
	-
	-

	1983
	31.5
	-
	-
	-

	1984
	32.8
	33.0
	0.04
	0.006098

	1985
	28.6
	28.4
	0.04
	0.006993

	1986
	29.0
	28.6
	0.16
	0.013793

	1987
	34.2
	34.3
	0.01
	0.002924

	1988
	28.0
	27.5
	0.25
	0.017857

	1989
	29.3
	29.8
	0.25
	0.017065

	1990
	29.1
	29.6
	0.25
	0.017182

	1991
	29.8
	29.9
	0.01
	0.003356

	1992
	28.9
	28.4
	0.25
	0.017301

	1993
	30.7
	30.4
	0.09
	0.009772

	1994
	28.3
	28.5
	0.04
	0.007067

	1995
	28.9
	28.8
	0.01
	0.00346

	1996
	29.0
	29.2
	0.04
	0.006897

	1997
	30.0
	29.9
	0.01
	0.003333

	1998
	32.0
	32.2
	0.04
	0.00625

	1999
	33.0
	32.4
	0.36
	0.018182

	2000
	34.9
	35.2
	0.09
	0.008596

	2001
	32.3
	32.7
	0.16
	0.012384

	2002
	34.2
	34.5
	0.09
	0.008772

	2003
	34.1
	33.8
	0.09
	0.008798

	2004
	35.9
	35.5
	0.16
	0.011142

	2005
	32.4
	32.4
	0.00
	0.000000

	2006
	35.8
	35.4
	0.16
	0.011173

	2007
	31.9
	32.0
	0.01
	0.003135

	2008
	30.9
	31.4
	0.25
	0.016181

	2009
	33.2
	33.8
	0.36
	0.018072

	2010
	29.5
	29.3
	0.04
	0.00678

	2011
	34.9
	34.8
	0.01
	0.002865

	2012
	29.4
	29.8
	0.16
	0.013605

	2013
	32.6
	32.0
	0.36
	0.018405

	
	
	  RMSE=0.357	
	MAPE=0.99945%  



As seen in Table 4.12, statistical measures of RMSE=0.357 and MAPE = 0.99945% were obtained.
4.4 [bookmark: _bookmark63]Significance of Forecasting Results

With regard to the Developed model, using the two statistical performance measures of Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) and its comparison with Yusuf et al (2015) (RMSE=19.2, MAPE=0.67%) while the Developed model achieved a higher accuracy of (RMSE=5.931, MAPE=0.34%) in car road accident prediction. While,in the prediction of Alabama student enrolment Yusuf et al (2015) (RMSE=7.02, MAPE=0.04%) the improvement in the Developed model’s prediction in this regard is (RMSE=6.66, MAPE=0.033%). This is due to the fact that, the Developed hybrid model has the lowest square loss and absolute loss. In terms of mismatch this can easily be noticed by a visual inspection of the drawn plots.

[bookmark: _bookmark64]CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 [bookmark: _bookmark65][bookmark: _bookmark65]Summary

In this work, a hybrid model that integrates Cat Swarm Optimization-Clustering (CSO-C) and Particle Swarm Optimization (PSO) into Fuzzy Time Series (FTS) forecasting model to improve forecasting accuracy was developed. The developed model was then applied to forecast five different data sets of which the last two among the five data sets are: University of Maiduguri (UNIMAID) student enrolment data and Jigawa State monthly temperature data. Cat Swarm Optimization Clustering (CSO-C) algorithm was coded in MATLAB and applied to generate seven unequal partitions (cluster centres) for the five data sets obtained. Based on the unequal partitions and membership degrees (partition matrix) obtained, a total of one hundred and four fuzzy “if”- rules were generated. By utilizing PSO coded in MATLAB, weights of forecasting rules were tuned to match the future data they represent. Finally, the forecasts were obtained and forecasting performances of the proposed model was compared with that of Chen’s (1996) and Yusuf et al (2015) models.
5.2 [bookmark: _TOC_250000]Significant Contributions

1) Development of an FTS model that incorporates Cat Swarm Optimization Clustering (CSO-C) and Particle Swarm Optimization (PSO) which speeds up convergence time in comparison with other existing clustering-based FTS model.
2) Development of a hybrid fuzzy time series forecasting model that has improved forecasting performance in terms of Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). In comparison with the bench mark FTS model by Song and Chissom in 1993, Chen’s FTS model in 1996 and the work of Yusuf et al 2015.

5.3 [bookmark: _bookmark66][bookmark: _bookmark66]Conclusion

Researchers’ observation has revealed that, objectively partitioning universe of discourse and the use of optimization technique to improve the defuzzification process affects forecasting accuracy. The developed model considered eliminating the need to define universe of discourse, learning memberships in hidden data structures, portioning the universe of discourse objectively and optimizing the defuzzification process. Cat Swarm Optimization Clustering (CSO-C) algorithm was developed to objectively partition the universe of discourse and learn memberships in five data sets namely: Belgium car road accident data obtained from the work of Yusuf et al (2015), Alabama University enrolment data obtained from the work of Song and Chissom (1993), TAIFEX data obtained from the work of Bas et al (2015), UNIMAID enrolment data obtained from academic planning unit of University of Maiduguri and Jigawa state monthly temperature data obtained from Nigerian Meteorological Agency (NiMet). To obtain unique fuzzy relations, Fuzzy Set Groups (FSGs) were generated for the five data sets and converted to ‘if-then’ forecasting rule. Then, particle swarm optimization algorithm was developed using MATLAB. By comparing the proposed hybrid model’s result with benchmark work and that of Yusuf et al (2015) forecasting models, using RMSE and MAPE criteria, it was observed that the proposed forecasting model provides more accurate forecasts.

5.4 [bookmark: _bookmark67][bookmark: _bookmark67]Recommendations for Further Work

Further work should consider the following for possible improvement:

1) More comparisons should be made with other existing models to further validate the proposed hybrid model.
2) Other fuzzy clustering techniques should be applied and compared with Cat Swarm Optimization Clustering (CSO-C) to determine the most suitable clustering technique for univariate data.
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[bookmark: _bookmark70]Appendix A: Belgium Car Road Accident Data
	Years
	Actual
	Years
	Actual

	1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989
	1574

1460

1536

1597

1644

1572

1616

1564

1464

1479

1369

1308

1456

1390

1432

1488
	1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004
	1574

1471

1380

1346

1415

1228

1122

1150

1224

1173

1253

1288

1145

1035

953





[bookmark: _bookmark71]Appendix B: Benchmark Data of Enrolment of University of Alabama

	Years
	Historical

Data
	Years
	Historical

Data

	1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981
	13055

13563

13867

14696

15460

15311

15603

15861

16807

16919

16388
	1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992
	15433

15497

15245

15163

15984

16859

18150

18970

19328

19337

18872




[bookmark: _bookmark72]Appendix C: Taiwan Future Exchange (TAIFEX) Data

	Date
	TAIFEX
	Date
	TAIFEX
	Date
	TAIFEX

	03.08.1998
	7552.00
	24.08.1998
	6955.00
	11.09.1998
	6726.50

	04.08.1998
	7560.00
	25.08.1998
	6949.00
	12.09.1998
	6774.55

	05.08.1998
	7487.00
	26.08.1998
	6790.00
	15.09.1998
	6762.00

	06.08.1998
	7462.00
	27.08.1998
	6835.00
	16.09.1998
	6952.75

	07.08.1998
	7515.00
	28.08.1998
	6695.00
	17.09.1998
	6906.00

	10.08.1998
	7365.00
	29.08.1998
	6728.00
	18.09.1998
	6842.00

	11.08.1998
	7360.00
	31.08.1998
	6566.00
	19.09.1998
	7039.00

	12.08.1998
	7330.00
	01.09.1998
	6409.00
	21.09.1998
	6861.00

	13.08.1998
	7291.00
	02.09.1998
	6430.00
	22.09.1998
	6926.00

	14.08.1998
	7320.00
	03.09.1998
	6200.00
	23.09.1998
	6852.00

	15.08.1998
	7320.00
	04.09.1998
	6403.20
	24.09.1998
	6890.00

	17.08.1998
	7219.00
	05.09.1998
	6697.50
	25.09.1998
	6871.00

	18.08.1998
	7220.00
	07.09.1998
	6722.30
	28.09.1998
	6840.00

	19.08.1998
	7285.00
	08.09.1998
	6859.40
	29.09.1998
	6806.00

	20.08.1998
	7274.00
	09.09.1998
	6769.60
	30.09.1998
	6787.00

	21.08.1998
	7225.00
	10.09.1998
	6709.75
	
	




[bookmark: _bookmark73]Appendix D: University of Maiduguri Student Enrolment Data

	
Year
	Actual Data
	
Year
	Actual Data

	1976
	743
	1985
	5800

	1977
	1128
	1986
	6168

	1978
	1882
	1987
	6711

	1979
	2500
	1988
	7238

	1980
	2925
	1989
	7687

	1981
	3251
	1990
	7960

	1982
	4561
	1991
	8302

	1983
	5329
	1992
	9884

	1984
	5719
	1993
	11410




[bookmark: _bookmark74]Appendix E: Jigawa State Monthly Temperature Data

	Date
	Training
              Data Set	
	Date
	Training Data Set  

	1982
	36.2
	1998
	36.9

	1983
	34.8
	1999
	37.8

	1984
	36.9
	2000
	38.4

	1985
	35.6
	2001
	36.7

	1986
	36.4
	2002
	38.9

	1987
	33.7
	2003
	38.1

	1988
	35.0
	2004
	38.0

	1989
	35.3
	2005
	36.7

	1990
	36.3
	2006
	39.5

	1991
	37.0
	2007
	37.3

	1992
	35.5
	2008
	36.6

	1993
	35.2
	2009
	36.9

	1994
	35.8
	2010
	37.4

	1995
	34.5
	2011
	37.7

	1996
	32.4
	2012
	36.1

	1997
	33.2
	2013
	37.5




[bookmark: _bookmark75]Appendix F: Membership Values for UNIMAID Data

	Year
	K1
	K2
	K3
	K4
	K5
	K6
	K7

	1976
	1.00
	0.02
	0.00
	0.00
	0.00
	0.00
	0.00

	1977
	0.83
	0.19
	0.00
	0.00
	0.00
	0.00
	0.00

	1978
	0.49
	0.53
	0.00
	0.00
	0.00
	0.00
	0.00

	1979
	0.21
	0.81
	0.00
	0.00
	0.00
	0.00
	0.00

	1980
	0.02
	1.00
	0.00
	0.00
	0.00
	0.00
	0.00

	1981
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00

	1982
	0.00
	0.26
	0.44
	0.00
	0.00
	0.00
	0.00

	1983
	0.00
	0.00
	0.79
	0.14
	0.00
	0.00
	0.00

	1984
	0.00
	0.00
	0.96
	0.32
	0.11
	0.00
	0.00

	1985
	0.00
	0.00
	1.00
	0.35
	0.15
	0.00
	0.00

	1986
	0.00
	0.00
	0.83
	0.52
	0.32
	0.00
	0.00

	1987
	0.00
	0.00
	0.59
	0.76
	0.56
	0.00
	0.00

	1988
	0.00
	0.00
	0.35
	1.00
	0.80
	0.00
	0.00

	1989
	0.00
	0.00
	0.15
	0.80
	1.00
	0.01
	0.00

	1990
	0.00
	0.00
	0.03
	0.68
	0.88
	0.13
	0.00

	1991
	0.00
	0.00
	0.00
	0.52
	0.72
	0.29
	0.00

	1992
	0.00
	0.00
	0.00
	0.00
	0.01
	1.00
	0.31

	1993
	0.00
	0.00
	0.00
	0.00
	0.00
	0.31
	1.00



[bookmark: _bookmark76]Appendix G: Membership Values for Jigawa Monthly Temperature Data (July)

	Year
	K1
	K2
	K3
	K4
	K5
	K6
	K7

	1982
	1.00
	0.02
	0.00
	0.00
	0.00
	0.00
	0.00

	1983
	0.83
	0.19
	0.00
	0.00
	0.00
	0.00
	0.00

	1984
	0.49
	0.53
	0.00
	0.00
	0.00
	0.00
	0.00

	1985
	0.21
	0.81
	0.00
	0.00
	0.00
	0.00
	0.00

	1986
	0.02
	1.00
	0.00
	0.00
	0.00
	0.00
	0.00

	1987
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00

	1988
	0.00
	0.26
	0.44
	0.00
	0.00
	0.00
	0.00

	1989
	0.00
	0.00
	0.79
	0.14
	0.00
	0.00
	0.00

	1990
	0.00
	0.00
	0.96
	0.32
	0.11
	0.00
	0.00

	1991
	0.00
	0.00
	1.00
	0.35
	0.15
	0.00
	0.00

	1992
	0.00
	0.00
	0.83
	0.52
	0.32
	0.00
	0.00

	1993
	0.00
	0.00
	0.59
	0.76
	0.56
	0.00
	0.00

	1994
	0.00
	0.00
	0.35
	1.00
	0.80
	0.00
	0.00

	1995
	0.00
	0.00
	0.15
	0.80
	1.00
	0.01
	0.00

	1996
	0.00
	0.00
	0.03
	0.68
	0.88
	0.13
	0.00

	1997
	0.00
	0.00
	0.00
	0.52
	0.72
	0.29
	0.00

	1998
	0.00
	0.00
	0.00
	0.00
	0.01
	1.00
	0.31

	1999
	0.00
	0.00
	0.59
	0.76
	0.56
	0.00
	0.00

	2000
	0.00
	0.00
	0.35
	1.00
	0.80
	0.00
	0.00

	2001
	0.00
	0.00
	0.15
	0.80
	1.00
	0.01
	0.00

	2002
	0.00
	0.00
	0.03
	0.68
	0.88
	0.13
	0.00

	2003
	0.00
	0.00
	0.00
	0.52
	0.72
	0.29
	0.00

	2004
	0.00
	0.00
	0.00
	0.00
	0.01
	1.00
	0.31

	2005
	0.02
	1.00
	0.00
	0.00
	0.00
	0.00
	0.00

	2006
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00

	2007
	0.00
	0.26
	0.44
	0.00
	0.00
	0.00
	0.00

	2008
	0.00
	0.00
	0.79
	0.14
	0.00
	0.00
	0.00

	2009
	0.00
	0.00
	0.96
	0.32
	0.11
	0.00
	0.00

	2010
	0.00
	0.00
	1.00
	0.35
	0.15
	0.00
	0.00

	2011
	0.00
	0.00
	0.83
	0.52
	0.32
	0.00
	0.00

	2012
	0.00
	0.00
	0.00
	0.52
	0.72
	0.29
	0.00

	2013
	0.00
	0.00
	0.00
	0.00
	0.01
	1.00
	0.31



[bookmark: _bookmark77]Appendix H: Membership Values for Road Accident Data

	Year
	k1
	k2
	k3
	k4
	k5
	k6
	k7

	1975
	0.87
	0.96
	0.99
	0.99
	0.95
	0.93
	0.92

	1976
	0.84
	0.93
	0.95
	0.97
	0.98
	0.96
	0.95

	1977
	0.81
	0.90
	0.93
	0.95
	0.99
	0.99
	0.98

	1978
	0.79
	0.88
	0.90
	0.93
	0.97
	0.99
	1.00

	1979
	0.82
	0.91
	0.94
	0.96
	1.00
	0.98
	0.97

	1980
	0.80
	0.89
	0.92
	0.94
	0.98
	1.00
	0.99

	1981
	0.82
	0.92
	0.94
	0.96
	1.00
	0.98
	0.96

	1982
	0.87
	0.96
	0.99
	0.99
	0.95
	0.93
	0.92

	1983
	0.86
	0.96
	0.98
	1.00
	0.96
	0.94
	0.93

	1984
	0.91
	1.00
	0.97
	0.95
	0.91
	0.89
	0.88

	1985
	0.94
	0.97
	0.94
	0.92
	0.88
	0.86
	0.85

	1986
	0.87
	0.97
	0.99
	0.99
	0.95
	0.93
	0.92

	1987
	0.90
	1.00
	0.98
	0.96
	0.92
	0.90
	0.89

	1988
	0.88
	0.98
	1.00
	0.98
	0.94
	0.92
	0.90

	1989
	0.86
	0.95
	0.97
	1.00
	0.96
	0.94
	0.93

	1990
	0.82
	0.91
	0.94
	0.96
	1.00
	0.98
	0.97

	1991
	0.87
	0.96
	0.98
	1.00
	0.95
	0.93
	0.92

	1992
	0.91
	1.00
	0.98
	0.96
	0.91
	0.89
	0.88

	1993
	0.92
	0.98
	0.96
	0.94
	0.90
	0.88
	0.87

	1994
	0.89
	0.98
	0.99
	0.97
	0.93
	0.91
	0.90

	1995
	0.97
	0.93
	0.91
	0.89
	0.84
	0.83
	0.81

	1996
	0.98
	0.88
	0.86
	0.84
	0.80
	0.78
	0.77

	1997
	0.99
	0.90
	0.87
	0.85
	0.81
	0.79
	0.78

	1998
	0.98
	0.93
	0.91
	0.89
	0.84
	0.82
	0.81

	1999
	1.00
	0.91
	0.88
	0.86
	0.82
	0.80
	0.79

	2000
	0.96
	0.94
	0.92
	0.90
	0.86
	0.84
	0.82

	2001
	0.95
	0.96
	0.94
	0.91
	0.87
	0.85
	0.84

	2002
	0.99
	0.89
	0.87
	0.85
	0.81
	0.79
	0.78

	2003
	0.94
	0.84
	0.82
	0.80
	0.76
	0.74
	0.73

	2004
	0.90
	0.81
	0.78
	0.76
	0.72
	0.70
	0.69
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	Year
	k1
	k2
	k3
	k4
	k5
	k6
	k7

	1971
	1.00
	0.77
	0.05
	0.00
	0.00
	0.00
	0.00

	1972
	0.77
	1.00
	0.28
	0.00
	0.00
	0.00
	0.00

	1973
	0.63
	0.86
	0.42
	0.10
	0.00
	0.00
	0.00

	1974
	0.26
	0.49
	0.79
	0.48
	0.00
	0.00
	0.00

	1975
	0.00
	0.15
	0.87
	0.82
	0.34
	0.00
	0.00

	1976
	0.00
	0.21
	0.93
	0.75
	0.28
	0.00
	0.00

	1977
	0.00
	0.08
	0.80
	0.88
	0.41
	0.00
	0.00

	1978
	0.00
	0.00
	0.69
	1.00
	0.52
	0.00
	0.00

	1979
	0.00
	0.00
	0.26
	0.57
	0.95
	0.40
	0.00

	1980
	0.00
	0.00
	0.21
	0.52
	1.00
	0.45
	0.00

	1981
	0.00
	0.00
	0.45
	0.76
	0.76
	0.21
	0.00

	1982
	0.00
	0.16
	0.88
	0.81
	0.33
	0.00
	0.00

	1983
	0.00
	0.13
	0.85
	0.84
	0.36
	0.00
	0.00

	1984
	0.06
	0.29
	0.99
	0.68
	0.20
	0.00
	0.00

	1985
	0.05
	0.28
	1.00
	0.69
	0.21
	0.00
	0.00

	1986
	0.00
	0.00
	0.63
	0.95
	0.58
	0.03
	0.00

	1987
	0.00
	0.00
	0.24
	0.55
	0.97
	0.42
	0.00

	1988
	0.00
	0.00
	0.00
	0.00
	0.45
	1.00
	0.47

	1989
	0.00
	0.00
	0.00
	0.00
	0.08
	0.63
	0.84

	1990
	0.00
	0.00
	0.00
	0.00
	0.00
	0.47
	1.00

	1991
	0.00
	0.00
	0.00
	0.00
	0.00
	0.47
	1.00

	1992
	0.00
	0.00
	0.00
	0.00
	0.12
	0.67
	0.79
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	  Year	
	k1	
	k2	
	k3	
	k4	
	k5	
	k6	
	k7	

	03.08.1998
	1.00
	0.96
	0.93
	0.92
	0.90
	0.89
	0.85

	04.08.1998
	0.99
	0.96
	0.93
	0.93
	0.91
	0.90
	0.86

	05.08.1998
	0.97
	0.99
	0.96
	0.95
	0.93
	0.92
	0.88

	06.08.1998
	0.98
	0.98
	0.95
	0.94
	0.93
	0.91
	0.88

	07.08.1998
	0.89
	0.93
	0.96
	0.97
	0.99
	1.00
	0.96

	10.08.1998
	0.91
	0.95
	0.98
	0.99
	0.99
	0.98
	0.94

	11.08.1998
	0.94
	0.98
	0.99
	0.98
	0.96
	0.95
	0.91

	12.08.1998
	0.85
	0.90
	0.92
	0.93
	0.95
	0.96
	1.00

	13.08.1998
	0.93
	0.98
	1.00
	0.99
	0.97
	0.96
	0.92

	14.08.1998
	0.90
	0.95
	0.98
	0.98
	1.00
	0.99
	0.95

	15.08.1998
	0.94
	0.98
	0.99
	0.98
	0.97
	0.95
	0.92

	17.08.1998
	0.92
	0.96
	0.99
	1.00
	0.98
	0.97
	0.93

	18.08.1998
	0.93
	0.97
	1.00
	0.99
	0.98
	0.96
	0.92

	19.08.1998
	0.94
	0.98
	0.99
	0.98
	0.96
	0.95
	0.91

	20.08.1998
	0.96
	1.00
	0.97
	0.96
	0.95
	0.93
	0.90

	  21.08.1998	
	0.97	
	0.99	
	0.96	
	0.95	
	0.94	
	0.93	
	0.89  
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Date
	Training Data Set
	Fuzzy Set
	
Date
	Training Data Set
	Fuzzy Set

	1975
	1460
	A4
	1990
	1574
	A5

	1976
	1536
	A5
	1991
	1471
	A4

	1977
	1597
	A6
	1992
	1380
	A2

	1978
	1644
	A6
	1993
	1346
	A2

	1979
	1572
	A6
	1994
	1415
	A3

	1980
	1616
	A7
	1995
	1228
	A1

	1981
	1564
	A6
	1996
	1122
	A1

	1982
	1464
	A4
	1997
	1150
	A1

	1983
	1479
	A3
	1998
	1224
	A1

	1984
	1369
	A3
	1999
	1173
	A1

	1985
	1308
	A2
	2000
	1253
	A1

	1986
	1456
	A4
	2001
	1288
	A2

	1987
	1390
	A2
	2002
	1145
	A1

	1988
	1432
	A3
	2003
	1035
	A1

	1989
	1488
	A4
	2004
	953
	A1
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Date
	Training Data Set
	Fuzzy Set
	
Date
	Training Data Set
	Fuzzy Set

	1972
	13563
	A2
	1983
	15497
	A3

	1973
	13867
	A2
	1984
	15145
	A3

	1974
	14696
	A3
	1985
	15163
	A3

	1975
	15460
	A3
	1986
	15984
	A4

	1976
	15311
	A3
	1987
	16859
	A5

	1977
	15603
	A4
	1988
	18150
	A6

	1978
	15861
	A4
	1989
	18970
	A7

	1979
	16807
	A5
	1990
	19328
	A7

	1980
	16919
	A5
	1991
	19337
	A7

	1981
	16388
	A5
	1992
	18876
	A7

	1982
	15433
	A3
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Date
	Training Data Set
	Fuzzy Set
	
Date
	Training Data Set
	Fuzzy Set

	2
	6726.5
	A1
	10
	6926
	A5

	3
	6774.55
	A2
	11
	6852
	A3

	4
	6762
	A2
	12
	6890
	A4

	5
	6952.75
	A6
	13
	6871
	A3

	6
	6906
	A5
	14
	6840
	A3

	7
	6842
	A3
	15
	6806
	A2

	8
	7039
	A7
	16
	6787
	A2

	9
	6861
	A3
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 	Data	

	DATA POINTS
	MAPS
	OPTIMAL WEIGHT(S)

	
1
	#, #→A5
	#,#

	2
	A5→ A6
	#,#

	3
	A5, A6→ A7
	0.022442, 0.977558

	4
	A5, A6,  A7→ A7
	0.23847,0.0023311, 0.81188

	5
	A7, A7→ A6
	0.98302, 0

	6
	A7, A7 , A6→A7
	0.47619, 0.28692, 0.25285

	7
	A7, A6, A7→ A6
	0.45287, 0.08873, 0.43831

	8
	A6, A7, A6→ A5
	0.93558, 0, 0

	9
	A7, A6,  A5→ A5
	0.081525,0.041537, 0.89499

	10
	A6,A5, A5→ A4
	0.47014, 0.19109, 0.25047

	11
	A5, A5, A4→ A4
	0.34784, 0.14902, 0.44225

	12
	A5,A5, A4, A4→ A5
	0.983841, 0, 0, 0.016159

	13
	A5,A5,A4, A4, A5 →A4
	0.42501,0, 0.5797, 0,0

	14
	A4, A5, A4→ A5
	0.21641, 0.7953, 0

	15
	A5, A4, A5→ A5
	0, 0.076319, 0.96584

	16
	A4, A5, A5→ A6
	0.46637, 0.40469, 0.25499

	17
	A5, A5 ,A6→ A5
	0.54514, 0.24358, 0.21717

	18
	A5, A6, A5 → A4
	0.69881, 0, 0.26337

	19
	A6,A5,A4→ A4
	0 , 0 , 1

	20
	A6,A5, A4,A4→A5
	0.32258,0.42598,0.13994,0.082344

	21
	A6,A5,A4,A4,A5→A3
	0.0073059,0, 0.034287, 0.86937

	22
	A5, A3→ A1
	0.15219, 0.73786

	23
	A3, A1→A2
	0.72378, 0.23485

	24
	A1, A2→ A3
	0.044945, 1

	25
	A1, A2, A3→ A2
	0.33401, 0.68015, 0

	26
	A3, A2→A3
	0.99895, 0.025133

	27
	A3, A2, A3→ A4
	0, 0.13372, 0.92348

	28
	A3, A4→A1
	0.93486, 0

	29
	A4, A1→A1
	0.34751, 0.50543

	30
	A1,A1→A1
	0.023115, 0.82616
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	DATA POINTS
	MAPS
	OPTIMAL WEIGHT(S)

	1
	#, #→ A1
	#, #

	2
	#, A1 → A2
	#, #

	3
	A1 , A1 → A2
	0 , 0.955055

	4
	A1, A1, A1→A3
	0.85229, 0, 0.20749

	5
	A1, A2→A3
	0, 0.56155

	6
	A1, A2, A2→A3
	0, 0.42887, 0.56148

	7
	A1, A2, A2, A2→A4
	0.9149, 0, 0, 0.18862

	8
	A2 , A3→A4
	0.9743, 0.0257

	9
	A3, A4→A5
	0.052746, 0.947254

	10
	A3, A4, A6→A5
	0, 0, 0.9743

	11
	A6, A6→A5
	0.21978, 0.74883

	12
	A6, A5→A3
	0.14587, 0.79113

	13
	A5, A2→A3
	0, 0.18867

	14
	A5, A2, A2→A3
	0, 0.37964, 0.59998

	15
	A5, A2, A2, A2→A3
	0.80891, 0, 0

	16
	A2, A2, A2, A2→A4
	0, 0.033894, 0

	17
	A2, A4→ A5
	0.95174, 0.13425

	18
	A2, A4, A6→A6
	0.090562,0.28332,0.72234

	19
	A6, A7→A7
	0.090562,0.28332,0.72234

	20
	A6, A7, A7→A7
	0.02116, 0, 0.97884

	21
	A6, A7, A7, A7→A7
	1,0, 0.085242, 0.042223

	22
	A7, A7, A7,  A7→A7
	0, 0, 0.41191, 0.58313
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	DATA POINTS
	MAPS
	OPTIMAL WEIGHT(S)

	1
	#, #→ A1
	#, #

	2
	#, A1 → A1
	#, #

	3
	A1,A1→A2
	0.024726, 0.98242

	4
	A1, A3→A2
	0, 0.99808

	5
	A3,A2→A6
	0.074917, 0.95315

	6
	A2, A6→A5
	0.54409, 0.4641

	7
	A6, A5→A3
	0.28698, 0.70344

	8
	A6, A5, A4→A7
	0.987482, 0.012518, 0

	9
	A4, A7→A3
	0.99808, 0

	10
	A7, A4 → A5
	0.0092343, 0.987482

	11
	A4, A5→A3
	0.0987651,0

	12
	A6, A4→A4
	0.004171, 0.995829

	13
	A4,A5→A3
	0.99066, 0.010751

	14
	A4, A5, A4→A3
	0.42951, 0.56504, 0

	15
	A4,A4→A2
	0.99198,0

	16
	A4,A3→A2
	0.0017454, 0.995829
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	DATA POINTS
	MAPS
	OPTIMAL WEIGHT(S)

	1
	#,# → A1
	#, #

	2
	#, A1 → A1
	#, #

	3
	A1, A1→ A2
	0.654322, 0.345678

	4
	A1, A2→ A2
	0.54268,0.71685

	5
	A1, A2, A2→A2
	0, 0.654322, 0.457320

	6
	A1, A2, A2, A2 →  A2
	0.0076546,0.654382,0.10951,0.54268,

	7
	A2, A2, A2, A2 → A3
	0.013258,0.45732,0.653578,0.73428

	8
	A2, A3 → A3
	0.8431, 0.49361

	9
	A2,A3, A3→  A3
	0.456781 , 0.322459 , 0.98603

	10
	A2, A3, A3, A3 → A3
	0.875324,0.555671, 0.234500,0.53987

	11
	A2, A3, A3, A3, A3→ A3
	0,0.12576,0.025119,0.232678,0.45530

	12
	A3, A3, A3, A3, A3 → A4
	0.288830, 0, 0.31378, 0.55446, 0.984230

	13
	A3, A4 → A4
	0, 0.4563210

	14
	A4, A4→A5
	0.28253, 0.779500

	15
	A4, A5, A5 → A5
	0.037718, 0.675431

	16
	A4, A5, A5→ A5
	0.074139, 0.026097, 0.984100

	17
	A5, A5,A5→ A6
	0.86899, 0.18538, 0.23143

	18
	A5,A6→ A7
	0.6744321, 0.3766734
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	DATA POINTS
	MAPS
	OPTIMAL WEIGHT(S)

	1
	#,# →A1
	#, #

	2
	#, A1 → A1
	#, #

	3
	A3, A3 → A4
	0.96888, 0.070553

	4
	A3, A3, A4 → A3
	0.02464, 0.22839, 0.00271

	5
	A3, A4, A3→ A4
	0.22839, 0.1745, 0.61559

	6
	A4, A3,A4 → A2
	0.96888, 0.31326, 0.61191

	7
	A4, A2 →  A3
	0.061413, 0.97133

	8
	A2, A3→ A3
	0.013474, 0.98158

	9
	A2, A3, A3 → A4
	0.18357, 0.58789, 0.26039

	10
	A2, A3, A3 ,A4 → A4
	0.230846, 0.042254, 0.070553

	11
	A3, A4, A4 → A3
	0.09823, 0.00237, 0.10643

	12
	A4, A4, A3 → A3
	0.09832, 0.36008, 0.61727

	13
	A4, A3, A3 → A3
	0.224562, 0.004632, 0.0084507

	14
	A3, A3, A3 → A2
	0.02245, 0.31325, 0.97183

	15
	A3, A2 → A1
	0.49387, 0.44118

	16
	A2, A1 →  A1
	0.02321, 0.61559

	17
	A1, A1→ A4
	0.11145, 0.042264

	18
	A1, A4 →  A6
	0.03267, 0.00256

	19
	A4, A6 →  A7
	0.01897, 0.027108

	20
	A6, A7 →  A4
	0.57553, 0.39372

	21
	A6, A7, A4 → A7
	0.37410, 0.09821, 0.67198

	22
	A6, A7, A4, A7 → A7
	0.1745, 0.061413, 0.97133, 0.49387

	23
	A4, A7 ,A7 →  A7
	0.29990, 0.004599, 0.46357

	24
	A7, A7, A7 → A4
	0.082003, 0.88125, 0.92345

	25
	A7, A7, A4 → A7
	0.046111, 0.17091, 0.84638

	26
	A7, A7, A4, A7 →  A5
	0.059782, 0.033079, 0.15022, 0.04442

	27
	A7, A5 →  A4
	0.9760, 0.44421

	28
	A5, A4 →  A4
	0.00236, 0.72221

	29
	A5, A4, A4 → A5
	0.99733, 0.00228, 0.92540

	30
	A4, A5 →  A6
	0.23716, 0.77197

	31
	A5, A6 →  A3
	0.65246, 0.30856

	32
	A6, A3→ A5
	0.55816, 0.46357
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	Year
	Actual Value
	Forecasted Value

	1976
	1536.00
	1538.00

	1977
	1597.00
	1606.00

	1978
	1644.00
	1650.00

	1979
	1572.00
	1566.00

	1980
	1616.00
	1613.00

	1981
	1564.00
	1570.00

	1982
	1464.00
	1455.00

	1983
	1479.00
	1490.00

	1984
	1369.00
	1381.00

	1985
	1308.00
	1317.00

	1986
	1456.00
	1452.00

	1987
	1390.00
	1377.00

	1988
	1432.00
	1438.00

	1989
	1488.00
	1474.00

	1990
	1574.00
	1584.00

	1991
	1471.00
	1476.00

	1992
	1380.00
	1384.00

	1993
	1346.00
	1358.00

	1994
	1415.00
	1415.00

	1995
	1228.00
	1224.00

	1996
	1122.00
	1124.00

	1997
	1150.00
	1150.00

	1998
	1224.00
	1231.00

	1999
	1173.00
	1176.00

	2000
	1253.00
	1244.00

	2001
	1288.00
	1280.00

	2002
	1145.00
	1154.00

	2003
	1035.00
	1025.00

	  2004	
	953.00	
	956.00	
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 	Model	
	
  Year	
	Actual Enrolment	
	Forecasted Enrolment  

	1972
	13563.00
	13678.00

	1973
	13867.00
	14197.00

	1974
	14696.00
	14701.00

	1975
	15460.00
	15247.00

	1976
	15311.00
	15204.00

	1977
	15603.00
	15966.00

	1978
	15861.00
	15484.00

	1979
	16807.00
	16841.00

	1980
	16919.00
	17031.00

	1981
	16388.00
	16528.00

	1982
	15433.00
	15300.00

	1983
	15497.00
	15176.00

	1984
	15145.00
	15290.00

	1985
	15163.00
	15091.00

	1986
	15984.00
	16056.00

	1987
	16859.00
	17045.00

	1988
	18150.00
	18521.00

	1989
	18970.00
	19403.00

	1990
	19328.00
	19018.00

	1991
	19337.00
	19117.00

	  1992	
	18876.00	
	19102.00	
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	Index
	Actual Values
	Forecasted Values

	2
	6726.50
	6737.00

	3
	6774.55
	6775.00

	4
	6762.00
	6779.00

	5
	6952.75
	6925.00

	6
	6906.00
	6874.00

	7
	6842.00
	6851.00

	8
	7039.00
	7020.00

	9
	6861.00
	6884.00

	10
	6926.00
	6946.00

	11
	6852.00
	6867.00

	12
	6890.00
	6888.00

	13
	6871.00
	6845.00

	14
	6840.00
	6872.00

	15
	6806.00
	6775.00

	  16	
	6787.00	
	6814.00	
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	Results

	Number of Runs
	Method(s)
	RMSE
	MAPE(%)

	1
	CSO-C & PSO
	11.043
	0.144

	2
	CSO-C & PSO
	10.754
	0.133

	3
	CSO-C & PSO
	12.073
	0.152

	4
	CSO-C & PSO
	10.620
	0.131

	5
	CSO-C & PSO
	8.912
	0.111

	6
	CSO-C & PSO
	10.753
	0.132

	7
	CSO-C & PSO
	14.162
	0.190

	8
	CSO-C & PSO
	19.162
	0.232

	9
	CSO-C & PSO
	14.311
	0.173

	10
	CSO-C & PSO
	14.162
	0.173

	11
	CSO-C & PSO
	13.372
	0.161

	12
	CSO-C & PSO
	12.071
	0.152

	13
	CSO-C & PSO
	11.042
	0.142

	14
	CSO-C & PSO
	10.753
	0.133

	15
	CSO-C & PSO
	10.622
	0.133

	16
	CSO-C & PSO
	8.911
	0.111

	17
	CSO-C & PSO
	8.644
	0.133

	18
	CSO-C & PSO
	11.040
	0.140

	19
	CSO-C & PSO
	10.752
	0.133

	20
	CSO-C & PSO
	12.860
	0.192

	21
	CSO-C & PSO
	14.683
	0.210

	22
	CSO-C & PSO
	14.752
	0.283

	23
	CSO-C & PSO
	5.931
	0.346

	24
	CSO-C & PSO
	14.081
	0.171

	25
	CSO-C & PSO
	14.832
	0.181

	26
	CSO-C & PSO
	14.743
	0.180

	27
	CSO-C & PSO
	11.722
	0.332

	28
	CSO-C & PSO
	5.931
	0.346

	29
	CSO-C & PSO
	10.623
	0.323

	 	30	
	CSO-C & PSO	
	26.712	
	0.322	



[bookmark: _bookmark92]Appendix W: Results for Alabama University Student Enrolment Data
	Results

	Number of Runs
	Method(s)
	RMSE
	MAPE (%)

	1
	CSO-C & PSO
	10.932
	0.344

	2
	CSO-C & PSO
	10.622
	0.323

	3
	CSO-C & PSO
	26.711
	0.322

	4
	CSO-C & PSO
	11.044
	0.140

	5
	CSO-C & PSO
	10.751
	0.133

	6
	CSO-C & PSO
	10.620
	0.134

	7
	CSO-C & PSO
	6.662
	0.033

	8
	CSO-C & PSO
	8.642
	0.133

	9
	CSO-C & PSO
	11.044
	0.144

	10
	CSO-C & PSO
	10.751
	0.133

	11
	CSO-C & PSO
	12.864
	0.194

	12
	CSO-C & PSO
	14.682
	0.211

	13
	CSO-C & PSO
	14.753
	0.283

	14
	CSO-C & PSO
	13.371
	0.087

	15
	CSO-C & PSO
	12.072
	0.015

	16
	CSO-C & PSO
	10.623
	0.013

	17
	CSO-C & PSO
	11.041
	0.016

	18
	CSO-C & PSO
	11.162
	0.018

	19
	CSO-C & PSO
	6.662
	0.033

	20
	CSO-C & PSO
	10.753
	0.133

	21
	CSO-C & PSO
	10.624
	0.131

	22
	CSO-C & PSO
	8.913
	0.112

	23
	CSO-C & PSO
	10.751
	0.130

	24
	CSO-C & PSO
	14.160
	0.191

	25
	CSO-C & PSO
	19.164
	0.234

	26
	CSO-C & PSO
	14.312
	0.172

	27
	CSO-C & PSO
	14.163
	0.173

	28
	CSO-C & PSO
	13.371
	0.162

	29
	CSO-C & PSO
	12.074
	0.154

	 	30	
	CSO-C & PSO	
	11.044	
	0.145	
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	Results

	Number of Runs
	Method(s)
	RMSE
	MAPE (%)

	1
	CSO-C & PSO
	77.091
	0.343

	2
	CSO-C & PSO
	60.753
	0.322

	3
	CSO-C & PSO
	80.072
	0.322

	4
	CSO-C & PSO
	100.162
	0.142

	5
	CSO-C & PSO
	60.620
	0.132

	6
	CSO-C & PSO
	100.711
	0.133

	7
	CSO-C & PSO
	80.073
	0.111

	8
	CSO-C & PSO
	100.711
	0.133

	9
	CSO-C & PSO
	50.913
	0.142

	10
	CSO-C & PSO
	80.711
	0.130

	11
	CSO-C & PSO
	80.160
	0.191

	12
	CSO-C & PSO
	60.373
	0.212

	13
	CSO-C & PSO
	43.368
	0.566

	14
	CSO-C & PSO
	77.094
	0.087

	15
	CSO-C & PSO
	80.081
	0.015

	16
	CSO-C & PSO
	80.833
	0.013

	17
	CSO-C & PSO
	80.721
	0.016

	18
	CSO-C & PSO
	77.072
	0.018

	19
	CSO-C & PSO
	80.072
	0.033

	20
	CSO-C & PSO
	100.713
	0.133

	21
	CSO-C & PSO
	50.913
	0.132

	22
	CSO-C & PSO
	80.714
	0.111

	23
	CSO-C & PSO
	80.164
	0.132

	24
	CSO-C & PSO
	60.373
	0.190

	25
	CSO-C & PSO
	43.368
	0.566

	26
	CSO-C & PSO
	77.092
	0.172

	27
	CSO-C & PSO
	80.083
	0.172

	28
	CSO-C & PSO
	80.812
	0.160

	29
	CSO-C & PSO
	80.743
	0.150

	 	30	
	CSO-C & PSO	
	102.164	
	0.140	
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	Results

	Number of Runs
	Method(s)
	RMSE
	MAPE (%)

	1
	CSO-C & PSO
	5.931
	0.340

	2
	CSO-C & PSO
	10.623
	0.320

	3
	CSO-C & PSO
	8.910
	0.110

	4
	CSO-C & PSO
	8.643
	0.130

	5
	CSO-C & PSO
	10.622
	0.130

	6
	CSO-C & PSO
	8.913
	0.111

	7
	CSO-C & PSO
	8.640
	0.133

	8
	CSO-C & PSO
	14.312
	0.171

	9
	CSO-C & PSO
	14.163
	0.171

	10
	CSO-C & PSO
	13.372
	0.160

	11
	CSO-C & PSO
	12.072
	0.153

	12
	CSO-C & PSO
	11.044
	0.142

	13
	CSO-C & PSO
	8.913
	0.111

	14
	CSO-C & PSO
	8.644
	0.133

	15
	CSO-C & PSO
	2.571
	0.038

	16
	CSO-C & PSO
	5.933
	0.342

	17
	CSO-C & PSO
	10.622
	0.322

	18
	CSO-C & PSO
	8.912
	0.113

	19
	CSO-C & PSO
	8.644
	0.133

	20
	CSO-C & PSO
	10.622
	0.133

	21
	CSO-C & PSO
	8.913
	0.110

	22
	CSO-C & PSO
	8.643
	0.132

	23
	CSO-C & PSO
	14.312
	0.171

	24
	CSO-C & PSO
	8.912
	0.111

	25
	CSO-C & PSO
	8.644
	0.131

	26
	CSO-C & PSO
	2.571
	0.038

	27
	CSO-C & PSO
	5.931
	0.340

	28
	CSO-C & PSO
	10.623
	0.320

	29
	CSO-C & PSO
	8.910
	0.112

	 	30	
	CSO-C & PSO	
	2.571	
	0.0375	
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	Results

	Number of Runs
	Method(s)
	RMSE
	MAPE(%)

	1
	CSO-C & PSO
	5.381
	0.342

	2
	CSO-C & PSO
	4.752
	0.232

	3
	CSO-C & PSO
	5.611
	0.333

	4
	CSO-C & PSO
	5.123
	0.289

	5
	CSO-C & PSO
	2.578
	0.231

	6
	CSO-C & PSO
	0.999
	0.211

	7
	CSO-C & PSO
	3.541
	0.222

	8
	CSO-C & PSO
	5.381
	0.342

	9
	CSO-C & PSO
	5.716
	0.345

	10
	CSO-C & PSO
	1.235
	0.201

	11
	CSO-C & PSO
	4.638
	0.231

	12
	CSO-C & PSO
	4.088
	0.289

	13
	CSO-C & PSO
	4.666
	0.299

	14
	CSO-C & PSO
	4.311
	0.268

	15
	CSO-C & PSO
	2.166
	0.221

	16
	CSO-C & PSO
	0.357
	0.133

	17
	CSO-C & PSO
	5.611
	0.356

	18
	CSO-C & PSO
	5.123
	0.311

	19
	CSO-C & PSO
	2.578
	0.231

	20
	CSO-C & PSO
	0.999
	0.211

	21
	CSO-C & PSO
	3.541
	0.222

	22
	CSO-C & PSO
	5.381
	0.342

	23
	CSO-C & PSO
	5.716
	0.345

	24
	CSO-C & PSO
	1.235
	0.201

	25
	CSO-C & PSO
	4.638
	0.23

	26
	CSO-C & PSO
	4.088
	0.289

	27
	CSO-C & PSO
	4.666
	0.231

	28
	CSO-C & PSO
	4.311
	0.268

	29
	CSO-C & PSO
	5.381
	0.342

	 	30	
	CSO-C & PSO	
	4.752	
	0.132	



[bookmark: _bookmark96]Appendix AA: Complete M-File for the FTS Model
clr clear
 (
1975
1460
1976
1536
1977
1597
1978
1644
1979
1572
1980
1616
1981
1564
1982
1464
1983
1479
1984
1369
1985
1308
1986
1456
1987
1390
1988
1432
1989
1488
1990
1574
1991
1471
1992
1380
1993
1346
1994
1415
1995
1228
1996
1122
1997
1150
1998
1224
1999
1173
2000
1253
2001
1288
2002
1145
2003
1035
2004
953
];
)format bank D = [




























m = 7; %cluster_no

[center, U] = clustFun(D, m); [umid, idx]= sort(center(:,2)); U = U(idx,:);

F = [];
for i = 1:size(U,2)

f = U(:,i); [value, index]=max(f); F(i,:) = index;
end

% Step 3.2: Obtain FSG FSG = fuzzySetGroup(F);

% Step 3.3 & 3.4: Obtain & Defuzzify the fuzzy forcast R = {};
for i=1:size(D,1) R{i} = [];
fuzzySet = FSG(i, find(FSG(i,:)>0)); fuzzySet = fuzzySet(end:-1:1);
if ~isempty(fuzzySet)
mj = umid(fuzzySet)'; ub = ones(size(mj)); % lb = zeros(size(mj));
A = D(i,2);
nvars = numel(mj);
fun = @(r) (sum(r.*mj) - A)^2;
r = particleswarm(fun,nvars,lb,ub); R{i} = r;
x_hat(i,:) = sum(mj .* r); end
end x_hat=x_hat(2:end); figure;
plot(D(2:end,1),D(2:end,2), 'b--o', D(2:end,1),x_hat, 'r--*')
title('Time-invariant Fuzzy Time Series') xlabel('Year')
ylabel('Accidents') xlim([1976, 2004])
% ylim([13000, 20000])
legend({'Actual', 'Forcast'})

x = D(2:end,2); clusterCenters = umid membershipValues = U'

for i=2:numel(F)
fuzzySet = FSG(i,find(FSG(i,:)>0)); fuzzySet = fuzzySet(end:-1:1);

display(['Data point', blanks(1),num2str(i), blanks(1),...
'maps',blanks(1), num2str(fuzzySet), blanks(1),...
'to', blanks(1),num2str(F(i)),blanks(1)...
'with weights ',blanks(1), num2str(R{i})]);
end

dataValue = [D(2:end,1) D(2:end,2) x_hat]

RMSE = sqrt(sum((x-x_hat).^2)/numel(x)) MAPE = mean(((abs(x-x_hat)./x).* 100))
image4.png




image5.png




image6.png




image7.png




image8.png




image9.png




image10.png




image11.png




image12.png




image13.png




image14.png




image15.png




image16.png




image17.png




image18.png




image19.png




image20.png




image21.png




image22.png




image23.png
Years




image24.png
sUjeap JO I9QUUlip




image25.png




image26.png




image27.png




image28.png
YEAR




image29.png
1Y Jo JlaquinN





image30.png




image31.png
pa|jolug sjuspms Jo ‘oN




image32.png




image1.png




image2.png




image3.png




