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Abstract

The first part of this work established, with examples, the fact that there are more than one non-abelian isomorphic types of groups of order n = sp, (s,p) = 1, where s<p and p  1 (mod s) for 100 < p < 4000. The factors s and p are distinct primes. Specifically considered here are groups of order n = 2p, 3p, 5p, 7p, 11p and 13p. It was discovered that the number of non-abelian isomorphic types of groups of order n = sp, s<p increased as n increased. The defining relations of such non-abelian isomorphic groups were outlined and a scheme developed to generate the numbers for the non- abelian isomorphic types of such groups. The scheme helped in generating many examples of non-abelian isomorphic types of such groups. The situation where p  k (mod s), k > 1 was worked out and such groups have no non-abelian isomorphic types. This gave credence to the fact that a group of order 15 and its like do not have a non-abelian isomorphic type. It also generated the non-abelian isomorphic types of groups of order n = spq, where s, p and q are distinct primes considering the congruence relationships between the primes. It was seen that there are more non- abelian isomorphic types when q 1 (mod p), q  1 (mod s) and p  1 (mod s). When q is not congruent to 1 modulo p but congruent to 1 modulo s fewer non-abelian isomorphic types were obtained. Moreover, if q is not congruent to 1 modulo p, q not congruent to 1 modulo s, and p not congruent to 1 modulo s, there cannot be a non- abelian isomorphic type of a group of order n = spq. In this case groups of order
n = 2pq, 3pq, 5pq and 7pq were considered. Later, proofs of the number of non- abelian isomorphic types for n =sp and n =spq using the examples earlier generated were given.


CHAPTER ONE INTRODUCTION

1.0 [bookmark: _TOC_250049]BACKGROUND OF STUDY

Group Theory is relevant to every branch of Mathematics where symmetry is studied. Every symmetrical object is associated with a group. It is due to this association that groups arise in different areas like Quantum Mechanics, Crystallography, Biology, and even Computer Science. There is no such easy definition of symmetry among objects without leading its way to the theory of groups. Classifying groups arise when trying to distinguish the number of isomorphic groups of order n. In organic chemistry, conformal factors affect the structure of a molecule and its physical, chemical and biological properties. For instance, the position of atoms, relative to one another affects the structural formula of Hydrogen peroxide, H2O2. We could write two different planar geometries that differ by a 1800 rotation about 0 – 0 bond. According to Francis A Carey (2003) one could also write an infinite number of non planar structures by tiny increments of rotation about the 0 – 0 bonds; Francis A Carey (2003). Groups may be presented in several ways like multiplication table, by its generators and relations, by Cayley graph, as a group of transformations (usually a geometric object), as a subgroup of a permutation group, or a subgroup of a matrix group to mention a few.

1.1 STATEMENT OF THE PROBLEM

Classifying groups arise when trying to distinguish the number of isomorphic types of a group of order n.
Hall Jnr and Senior (1964) used invariants as the number of elements of each order k (k small) to determine whether two groups of order 2n (n < 6) are isomorphic. Philip (1988) in his article developed a systematic classification theory for groups of prime


power orders. For certain classes of groups, there exists practical methods to list such groups. Newman and O’Brien (1990) introduced an algorithm to determine up to isomorphism the groups of prime-power order. The determination of all groups of a given order up to isomorphism is an old question in group theory. It was introduced by Cayley who constructed the groups of order 4 and 6 in 1854.

Meubťser (1967) listed all groups of order at most 100 except for 64 and 96. The groups of order 96 were added by Lane (1982).
Moreover, for factorizations of certain orders, the corresponding groups have been classified, e.g. Holder (1983) determined the groups of order pq2 and pqr, and James (1980) determined the groups of order pn for odd primes and n < 6.
Recently, algorithms have been used to determine certain groups. For example O’Brian (1991) determined the 2-groups of order at most 28 and the 3-groups of order at most 36. Moreover, Betten (1996) developed a method to construct finite soluble groups and used his construction to construct soluble groups of order at most 242.
Determination of isomorphic types has been a comparatively difficult problem as there was no method that is sufficiently effective.
Most of the classifications of the non-abelian isomorphic types of certain finite groups were done for groups of small orders. This is possibly due to the complexity of computation as the factors increase. The problem then arise to find the non-abelian isomorphic types of groups of higher orders which can be factorized into two or three distinct primes taking into consideration of the relationship between the prime factors. The need also arise to construct a suitable computer program to assist in solving such a problem.
Hence, the statement of the problem is “Determination of the Number of non-Abelian Isomorphic Types of Certain Finite Groups”.





1.2 [bookmark: _TOC_250048]AIM AND OBJECTIVES

The aim of this thesis is to determine the number of non-abelian isomorphic types of certain finite groups of higher orders.
We hope to achieve the following objectives:

(i) Finding relationship, through series of examples, of the number of non- Abelian Isomorphic types of groups of order n=sp and the congruence relation between the primes s and p.
(ii) Determining the proof for the number of non-Abelian isomorphic types in each congruence relationship and stating their defining relations.
(iii) Determine and design a suitable computer program that will help in working out the number relationship between such primes and generating the numbers for the non-Abelian isomorphic types.
(iv) Finding the non-Abelian isomorphic types of groups of order n = spq where s,p and q are distinct primes and determining their defining relations.

1.3 [bookmark: _TOC_250047]SCOPE OF THE STUDY

The scope here is limited to the determination of the number of non-Abelian isomorphic types of groups of order 2p, 3p, 5p, 7p, 11p, 13p where p < 4000. Also considered are groups of order 2pq, 3pq, 5pq and 7pq. The primes p and q are distinct primes with p < q.

1.4 DEFINITION OF THE CONCEPT OF ISOMORPHIC GROUPS

The concept of group isomorphism can be explained with chessboard that has four plane symmetries. The identity, rotation r through  about its centre, and the

reflections

q1 , q2

in its two diagonals form a group under composition whose


multiplication is given in table 1 below.


Table 1.1: Four plane symmetries of a chessboard




	
	e
	r
	q1
	q2

	e
	e
	r
	q1
	q2

	r
	r
	e
	q2
	q1

	q1
	q1
	q2
	e
	r

	q2
	q2
	q1
	r
	e





It is easy to check that multiplication modulo eight makes the numbers 1,3,5,7 into a group.
There is an apparent similarity between these two groups if we ignore their origins. In each case the group has four elements, and these elements appear to combine in the same manner. Only the way in which the elements are labeled distinguishes one table from the other.

Label the first group G, the second G', and the correspondence.

e 1, r  3, q1  5, q2  7 ,
This correspondence is called an isomorphism between G and G'. It is a bijection and

it carries the multiplication of G to that of G'. Technically they are isomorphic in the following sense.
Two groups G and G' are isomorphic if there is a bijection  from G to G' which



satisfies

xy  xy for all

x, y G . The function  is called an isomorphism


between G and G'.


Hence the isomorphism as a bijection implies that G and G' must have the same order. It sends the identity of G to that of G'. Isomorphism also preserves the order of each element (Armstrong, 1988).

1.4.1 [bookmark: _TOC_250046]EXAMPLES

(i) The group of all real numbers with addition, (R,+), is isomorphic to the group of


all positive real numbers with multiplication (

R+ ,× ) .



Proof: Define f :(R,+) → (R+ ,×)

by f(x) = ex. For elements x, y in R then


f(x) = f(y) then ex = ey, so x = y. This implies that x ≠ y, then f(x) ≠ f(y) i.e., ex ≠ ey. If r is an element o R+, then f(ln r) = r, where ln r belong to R showing that f is onto R+ . Again, for elements x, y in R, we have
f(x + y) = ex+y = ex.ey = f(x)f(y). Hence (R,+) is isomorphic to (R+ ,×).
(ii) Every cyclic group of infinite order is isomorphic to the additive group I of

integers

Proof: Consider the infinite cyclic group G generated by a and the mapping


n → an,

n ∈I of I into G.


Now, this mapping is onto since any n in I is mapped to exactly one an. Moreover, it is one-to one since if s > t we have s ↔ as and t ↔ at, then as-t =1 and G would be finite. Hence if s ‡ t, then as ≠ at.
Finally, s + t ↔ as+t = as.at. Hence the mapping is an isomorphism, that is I  G.
(iii) The group Z of integers (with addition) is a subgroup of R, and the factor group R/Z is isomorphic to the group S' of complex numbers of absolute value 1 (with multiplication):


R/Z  S'

An isomorphism is given by f(x+Z) = e2xi
for every x in R.

Proof: We only need to show that for any k ε Z, then f(x + k) = e2i(x +k) = e2xi +2iπk

= e2xi. e2ki = e2xi(Cos2πk + iSin2πk) = e2xi.

If x ≠ y then f(x + k) ≠ f(y + k), i.e., e2xi ≠ e2yi . Also for z ε R, then f(ln(z + k))
= eln(z + k) = z + k.

(iv) The Klein four-group is isomorphic to the direct product of two copies of

Z2 = Z/2Z and can therefore be written Z2xZ2. Another notation is D2, because it is a dihedral group.
(v) Generalizing this, for all odd n, D2n is isomorphic with the direct product of Dn and Z2.

1.4.2 [bookmark: _TOC_250045]PROPERTIES OF ISOMORPHIC GROUPS

(i) The Kernel of an isomorphism from (G,*) to (H, ʘ), is always {eG} where eG is the identity of the group (G,*).
(ii) If (G,*) is isomorphic to (H,ʘ), and if G is Abelian then so is H.

(iii) If (G,*) is a group that is isomorphic to (H,ʘ) [where f is the isomorphism], then if a belongs to G and has order n, then so does f(a)
(iv) If (G,*) is a locally finite group that is isomorphic to (H,ʘ), then (H,ʘ), is also locally finite.
We state mostly without proof certain fundamental results of group theory which we shall be needed:




1.4.3 [bookmark: _TOC_250044]THEOREM (LAGRANGE’S THEOREM)

Let G be a group of finite order n, and H a subgroup of G. The order of H divides the order of G.

1.4.4 [bookmark: _TOC_250043]THEOREM (CAUCHY’S THEOREM)


If p is a prime number and p G


then G has an element of order p.



1.4.5 [bookmark: _TOC_250042]THEOREM (SYLOW’S FIRST THEOREM)

If pa is the highest power of a prime dividing the order of a group G, then G has at least one subgroup of order p

1.4.6 [bookmark: _TOC_250041]DEFINITION 1

For any prime, p, we say that a group G is a p-group if every element x in G has order pk, for some integer k

1.4.7 [bookmark: _TOC_250040]DEFINITION 2

Let G be a finite group of order n = pq, where (p,q) = 1. Then any subgroup of order pm is called a Sylow p-subgroup of G.

[bookmark: _TOC_250039]1.4.8. DEFINITION 3

Let a be an element of a group G and e the identity element of G.	The smallest positive integer n such that an = e is called the order of a. The order of a group G,
written G is the cardinal number of elements of G. G is said to be finite or infinite

according as its order is finite or infinite (Kuku, 1980).


1.4.9 [bookmark: _TOC_250038]DEFINITION 4

Let G be a group and let a and b be elements of G then G contains both   a	and b .


Other elements of G depends on the relation between a and b. The smallest subgroup


generated by a anb b is denoted by

a, b .

If ab = ba then G is said to be Abelian or



commutative.	If

ab ≠ba

then G is said to be non-Abelian or is said to be not


commutative.


1.4.10 [bookmark: _TOC_250037]THEOREM (SYLOW’S SECOND THEOREM)

All Sylow p-subgroups of a finite group G belonging to the same prime are conjugate with one another in G.

1.4.11 [bookmark: _TOC_250036]THEOREM (SYLOW’S THIRD THEOREM)

Let r be the number of Sylow p-subgroups of G, then r is an integer of the form 1+kp and r is a factor of the order of G.

1.4.12 [bookmark: _TOC_250035]THEOREM (A BASIS THEOREM FOR FINITE ABELIAN GROUPS)

Every finite Abelian group is a direct sum of primary cyclic groups.


1.4.13 THEOREM (ANOTHER BASIS THEOREM FOR FINITE ABELIAN GROUPS)

Every finite Abelian group A can be decomposed into a direct sum of cyclic groups.


 (
m
) (
m
)A  C	 C
1	2

	 C
 (
m
)s 1



Where m11 mi

for all i= 1,2,…,s-1




1.4.14 [bookmark: _TOC_250034]THEOREM
If H and K are normal subgroups of G such that H K  1



then any element x of H


commutes with any other element y of K.


PROOF:


For any

x  H and y  K, consider the commentator

z  xyx 1 y 1  xyx 1 y 1  xyx 1 y 1  and notice from the first factorization and the normality of K that y-1K, xy x-1 K  zK.
Furthermore, since H is normal, we have from the second factorization that

x  H, yx 1 y 1  H  z  H

Hence, we deduce that
zH K  1 z 1


Whence
xy  yx



as asserted



1.4.15 PROPOSITION

Let G be a finite group and K any normal subgroup contained in the centre of the group G. Then if G is non-Abelian the quotient group G/K cannot be cyclic.

PROOF:

Suppose
G / K  K, tK,..., tn1K


Then for any

x, y G we have



x= tsu, y  t r v, For some u,v K



and thus

xy = tsutrv = tk+ruv = tr+svu = trvtsu = y x

(Since u, v permute with t).

This contradicts the non-Abelian hypothesis on G.

The problem of explicitly constructing all the groups of a given finite order has a long and somewhat chequered history; its study was initiated by Cayley in 1864 when he determined the groups of order at most 6. The aim is to determine a complete and


irredundant list of the groups of a given order: a representative of each isomorphism type present. It is usually comparatively easy to generate a complete list; the difficulty lies in the reduction to distinct isomorphism types (Hall M., 1976).

1.4.16 [bookmark: _TOC_250033]THEOREM (FROBENIUS)

Let H be a p-subgroup of order pa in G. Let K, of order pb, be the intersection of H and some other p-Sylow subgroup H' of G such that no subgroup of G containing K and of order greater than pb is contained in any two p-Sylow subgroups. Then G must contain an element of order prime to p which permutes with K but does not permute with H.

1.4.17 [bookmark: _TOC_250032]REMARK

a) The subgroup K is a subgroup of maximum order common to both H and H', it does not necessarily have maximal order among the intersections of any two p-Sylow subgroups.
b) There is a parallel theorem when p-Sylow subgroups H and H' are both Abelian. In this case, every element of K is self-conjugate in the subgroup gp{H,H'}.
Thus if N is the greatest subgroup of G in which every element of K is self-conjugate, then N contains two and hence
1 + kp p-Sylow subgroups.

That is, N has order pam’(1+kp) where pam’ is the order of the greatest subgroup of the normalizer of H (of order pam) in which every element of K is self-conjugate. Thus, in this case, there is an element of order p which permutes with every element of K.

1.4.18 [bookmark: _TOC_250031]POLYNOMIAL:

A function of z of the form

P(z) = a0 + a1z + a2z2 + … + anzn,
in which an ≠ 0 is called a polynomial of degree n in z.


1.4.19 [bookmark: _TOC_250030]THEOREM

Every polynomial of degree n (where n > 0) has at least one root and at most n roots (Mervin 1986).




[bookmark: _TOC_250029]CHAPTER TWO LITERATURE REVIEW

2.0 [bookmark: _TOC_250028]MULTIPLICATION TABLES OF GROUPS OF ORDER 2 TO 10.

In his work, Wavrik J. (2002) developed a JAVA applet that allows experimentation with group multiplication tables. Here we present some of his work for groups of order 6 and 10. It was noted that any group of order 6 and 10 is isomorphic to one of the groups given below and some their tables are outlined in Tables 2.1 and 2.2 below.

C6, the cyclic group of order 6 Described via the generator a with relation a6 = 1:
Elements:

Order 6: a, a5 Order 3: a2, a4 Subgroups:
Order 6: {1, a, a2, a3 ,a4, a5} Order 3: {1, a2, a4}
Order 2: {1, a3}

Order 1: {1}


S3, the symmetric group on three elements

Described via generator a, b

with relations a3 = 1, b2 = 1, ba = a-1b: Elements:
Order 3: a, a2

Order 2: b, ab, a2b Subgroups:
Order 6: {1, a, a2, b, ab, a2b} Order 3: {1, a, a2}
Order 2: {1, b} {1, ab} {1, a2b}

Order 1: {1} Normal subgroups:
Order 6: {1, a, a2, b, ab, a2b

Order 3: {1, a, a2}

Order 1: {1}Table 2.1:  Symmetric group of order 6






	X
	1
	a
	a2
	b
	ab
	a2b

	1
	1
	a
	a2
	b
	ab
	a2b

	a
	a
	2
	1
	ab
	a2b
	b

	a2
	a2
	1
	a
	a2b
	b
	ab

	b
	a
	a2b
	ab
	1
	a2
	a

	ab
	ab
	b
	a2b
	a
	1
	a2

	a2b
	a2b
	ab
	b
	a2
	a
	1






C10, the cyclic group of order 10

Described via the generator a with relation a10 = 1:

Elements:

Order 10: a, a3, a7, a9

Order 5: a2, a4, a6, a8 Order 2: a5 Subgroups:
Order 10: {1, a, a2, a3, a4, a5, a6, a7, a8, a9} Order 5: {1, a2, a4, a6, a8}
Order 2: {1, a5}

Order 1: {1}


D5, the dihedral group of order ten

Described via generators a, b

With relations a5 = 1, b2 = 1, ba = a-1b: Elements:
Order 5:a, a2, a3, a4

Order 2: b, ab, a2b, a3b, a4b Subgroups:
Order 10: {1, a, a2, a3, a4, b, ab, a2b, a3b, a4b} Order 5: {1, a, a2, a3, a4}
Order 2: {1, b}, {1, ab}, {1, a2b}, {1, a3b}, {1, a4b}

Order 1: {1} Normal subgroups:
Order 10: {1, a, a2, a3, a4, b, ab, a2b, a3b, a4b} Order 5: {1, a2, a3, a4}
Order 1: {1}.


Table 2.2: Symmetric group of order 10, S5




	X
	1
	a
	a2
	a3
	a4
	b
	ab
	a2b
	a3b
	a4b

	1
	1
	a
	a2
	a3
	a4
	b
	ab
	a2b
	a3b
	a4b

	a
	a
	a2
	a3
	a4
	1
	ab
	a2b
	a3b
	a4b
	b

	a2
	a2
	a3
	a4
	1
	a
	a2b
	a3b
	a4b
	b
	ab

	a3
	a3
	a4
	1
	a
	a2
	a3b
	a4b
	b
	ab
	a2b

	a4
	a4
	1
	a
	a2
	a3
	a4b
	b
	ab
	a2b
	a3b

	b
	b
	a4b
	a3b
	a2b
	ab
	1
	a4
	a3
	a2
	a

	ab
	ab
	b
	a4b
	a3b
	a2b
	a
	1
	a4
	a3
	a2

	a2b
	a2b
	ab
	a
	a4b
	a3b
	a2
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We now give results on group classification up to isomorphism which are basic to this work.
John R. Durbin (1979) showed the number of isomorphic types of groups of order n for each n from 1 to 32 and stated as follows: “There is just one group of order n if

and only if n is a product of distinct primes p1, p2,..., pk such that pj |

(pi – 1) for


1 < i < k, 1 < j < k”.

The above conclusion was reached using groups of orders 15 = 3 x 5, 33 = 3 x 11.


2.1 ISOMORPHIC TYPES OF GROUPS OF ORDER n = pq

Let G be a group of order n = pq, where p and q are distinct primes with p < q. Then by Sylow’s theorem (1.4.5) there must be only one Sylow q-subgroup in G. This subgroup
K = gp{b}, bq = 1,

and must be normal in G.


Moreover, any Sylow p-subgroup must be of the form
H  gpa, a p 1.

For K⊲G, we must have


a 1ba  K

and



a-1ba = bt
for some integer t.

Clearly, if t = 1 we have that G in Abelian and so must be of order pq.

By (1.4.11) there is only one Sylow p subgroup and we have the cyclic group situation.
Suppose t ≠1then


a _1bka = (a _1ba)k  = btk
a_ 2b a 2 = a_1(a _1ba)a



= bt2


This will be done up to some integer j such that

a_ jba j = bt j .
If j = p the following relations will be obtained since ap = 1:

b = a_ pbap = btp
We deduce that


1= btp _1

and so


q ( t p -1) ⇒ tp ≡ 1(mod q)


The solutions of tp ≡1(mod q) are



1, t, t 2 ,..., t p ,

and with the exception of 1, generate the same group, since the replacement of
H  gpa replace t by tj



Conversely, if tp

ab = bta

≡ 1(mod q) and


then using the multiplication scheme:
a"bv axby  au ax axbv axby
=  au+xbvtx+ y

=  au+xby+vtx
We obtain that G is the semi-direct product:
G =K xw H, where the action of  is induced by
aωb = a_1ba = bt
Thus the following is inferred from the above proof


2.2 [bookmark: _TOC_250027]PROPOSITION

There are at most two isomorphic types of groups of order pq, where p and q are distinct primes and p<q, namely:-
(i) The cyclic group of order pq and

(ii) The non-Abelian semi-direct product
gpbxgpa


where

ap = bq = 1, a_1ba = bt



tp ≡ 1(mod q)

t   1mod qand p q - 1




(Michio, 1982).


For the group of order n = 2p, (2,p) =1, since any group of a prime order is necessarily cyclic, it is obvious that subgroups of G of orders 2 and p are cyclic. Hence G = C2 x Cp. By Sylow’s theorem (1.4.5) there must be only one Sp - subgroup of G, Cp say, such that Cp = gp{b}; bp = 1.


This must be normal in G. Moreover, any other Sylow 2-subgroup will be of the form
C2 = ‹a ›; a2=1.
Hence Cp ◁ G and a-1ba Cp. We need to find the integer r such that a-1ba = bt and t ≠ 1. If such integer exists, then we have the non-Abelian group of order
n = 2p.   But if there are p S2 -subgroups of order 2 in G and only one Sp- subgroup, we will have a total of p(2 - 1) + (p - 1) = p + p - 1 = 2p - 1 elements in G excluding the identity element. This implies that there are p elements of order 2 in G some of which do not commute with the element b in Cp.   Hence a-1ba = bt for t ≠ 1 and t is such that t2  1 (mod p).
If we take values for t in the interval 1<t<p, it is obvious that only one value will satisfy the congruence t2  1(mod p) and this value gives the non-Abelian isomorphic types of the group G of order n = 2p.
From the above fact the following Corollary is stated:


2.3 [bookmark: _TOC_250026]COROLLARY

There is only one isomorphic class of a group of order 15 which is Abelian and two isomorphic types of groups of order 6, 10, 14, 21, 22, and 26, of which one is Abelian and the other is non-Abelian.

2.5 GROUPS OF ORDER p2q

Let G be any group of order p2q, where p and q are distinct. By a Basis Theorem for finite Abelian Groups which states that “Every finite Abelian group is a direct sum of primary cyclic groups. The isomorphism classes of Abelian groups of order p2q are
given by the following invariants
p2 × q, and p × p × q.

The first form is cyclic and the second is not cyclic.


Suppose G is a n on-Abelian groups of order 12.

There are 1 or 4 Sylow 3 – subgroups of order 3 since if r is the number of Sylow p- subgroups of G, then r is an integer of the form 1+kp and r is a factor of the order of G.
For 4 Sylow 3– subgroups there will be 8 elements of order 3 leaving 4 elements which must constitute a unique 2 – Sylow subgroup and therefore normal in G. We claim in such a case there can be no element of order 4, x say; for otherwise, for some element a which is of order 3 we have, since ‹ x › is normal in G, that a-1 a = or 3, (the only powers of of order 4). But
a-1 a=

implies that G is Abelian, a contradiction.

Furthermore

a-1 a= 3

a-2 a2=a-1(a-1 a) a=a-1- 3a=( 3)3= 9= .


Hence



3=a-1 a=a-4 a4=a-2 a2= ,


which is absurd. Hence, we must have a-1 a=	and so G would necessarily be Abelian. Hence, we must have that the 2-Slow subgroup is of the Klein type, say
K= ‹ ,y ›, 2=1, y2=1;	y=y .

If z is any element of order 3 in G, it must permute the three elements of order 2 in K amongst themselves: that is we may set z-1 z=y; z-1yz= y,
and obtain a single new type:


(iii)	G3= ‹ ,y,z ›, 2=1,y2=1,z3=1;z-1 z=y,z-1yz= y.
Since the Sylow 2 – subgroup is normal if the Sylow 3-subgroup is not, it follows that if the S2 – subgroup is not normal, then the 3-Sylow subgroup


must be normal. Thus, we now assume that the 3-Sylow subgroup is unique, and hence normal by Sylow’s Second Theorem which states that “all Sylow p-subgroups of a finite group G belonging to the same prime are conjugate with one another in G. We may thus consider
K= ‹ a ›; a3=1

and note that either the S2 – subgroup is cyclic or it is non-cyclic since there are two isomorphic types of groups of order 4, 9 and 25.
in the former situation, we have an element b of order 4 and since G is non- Abelian we must have, by virtue of the normality of K,
b-1ab=a4=a-1, Moreover,
b-2ab2 = a4 = a,

and deduce that b2 commutes with a and the two together generate a cyclic subgroup of order 6. We therefore have the following isomorphic type:

(iv)	G4= ‹ a,b ›,a3=1,b4=1;b-1ab=a-1.
Suppose now that we have an S2 – subgroup of the form H= ‹ b,c ›,b2=1,c2=1;bc=cb.
Then since G is non-Abelian at least one of b or c does not commute with a.

Suppose

b-1ab = a2, then c-1ac = a or c-1ac = a2.

In the former we have

(bc)-1a(bc) = c-1b-1abc = a2

Also if

c-1ac = a2, then

(bc)-1a(bc) = c-1b-1abc = c-1a2c = (a2)2 = a4 = e.


Hence we have the following isomorphic type

(v)	G5= ‹ a,b,c ›,a3=1,b2=1,c2=1;bab = a-1,bc = cb, ca = ac.
= ‹ a,b › x ‹ c › = D3xC2.


If we set



=ac, then	2=a2=a-1,	3=e;


also we may set

y=b

and deduce that

y y=bacb=a-1c= 2,	3=y5=1.

Thus

‹ a,b,c ›= ‹ ,y ›, 6=1,y2=1;y y= -1

 D6,

which is the dihedral group of order 12. Hence we have proved the following:


2.5.1 PROPOSITION

There are five isomorphism classes of groups of order 12, two are Abelian while the remaining three are non-Abelian (Okorie and Obi, 1991).

2.5.2 SUMMARY OF DEFINING RELATIONS

(i)	G1= ‹	› , 12=1.
(ii)	G2= ‹ ,y ›, 6=1,y2=1;	y=y .
(iii)	G3= ‹ ,y,z ›, 2=1,y2=1,z3=1;z-1 z=y,z-1yz= y,	y=y .
(iv)	G4= ‹ ,y ›, 4=1,y3=1;	-1y =y-1.
(v)	G5= ‹ ,y ›, 6=1,y21;y y= -1.

2.5.3 REMARK

The group G3 has no subgroup of order 6; this is the only class of groups of order 12


with this property and provides the first counter example to the converse of Lagrange’s Theorem. Thus, it is no true in general that if m is a factor of n, then any group of order n has some subgroup of order m.

Next, suppose G is a non-Abelian group of order 18=32x2.

By (1.4.11) there are 1, 3 or 9 Sylow 2 – subgroups. Also, we have exactly one 3 – Sylow subgroup. If there were only 1 Sylow 2-subgroup, then by Proposition (1.4.15) G would be a direct product of the form
C2xH,

where H is the unique 3-Sylow subgroup of order 9=32 which is Abelian. Thus, it follows that if G is non-Abelian we need consider cases in which the Sylow 3-subgroup is normal in G. If the subgroup K of order 9 were cyclic, we may present this subgroup by
K= ‹ ›,   9=1.

Also by Cauchy’s Theorem (1.4.4) we have some element y of order 2 in G. Clearly, y  K.
Moreover, K⊲G.
 y-1Ky = K

and in particular, we have y-1 y= t, where

=y-2= y2=

xt 2

(since y2=1).


We deduce that

t 2 =
and hence

t2 1 (mod. 9).


The solutions of this congruence relations in the range 1t<9 are 1 and 8. Since t =1 entails that G is Abelian, it follows that
y-1 y= 8= -1

and we have


(iii)	G= ‹ ,y›, 9=1,y2=1;y y= -1.

The above class is the class of the dihedral group of order 18, D9. On the other hand let the 3-Sylow subgroup be of the form
N= ‹ ,y › 3=1,y3=1;	y=y .

Then, since we have some element z of order 2, and since the non-Abelian nature of G forbids z commuting with both and y we must have the following possibilities:
(a) z=z , zyz = y-1.

(b) z z= -1, zyz = y-1.

Thus we have the following classes


(iv)	G4= ‹ ,y,z ›, 3=1,z2=1;	y = y , z	=	z, zyz = y-1.
= ‹ › x ‹,z ›

C3xD3.

(v)	G5= ‹ ,y,z ›, 3=1,y3=1,z2=1;	y=y ,z z= -1,zyz=y-1.
We have therefore proved the following


2.5.4 PROPOSITION

There are five classes of groups of order 18, two are abelian of which one is cyclic, and three are non-Abelian.



2.5.5 SUMMARY OF DEFINING RELATIONS

(i)	G1= ‹	›, 18=1.
(ii)	G2= ‹ ,y ›, 9=1,y2=1;	y=y .
(iii)	G3= ‹ ,y ›, 9=1,y2=1;y y= -1.
(iv)	G4= ‹ ,y,z ›, 3=1,y3=1,z2=1;	y=
zyz=y-1,z = z.

(v)	G5= ‹	,y,z ›, 3=1,y3=1,z2=1;	y=y ,zy=y-1,z z= -1.
Again, suppose G is a non-Abelian group of order 20=22 5. By (1.4.11) there are exactly 1 Sylow 5-Subgroup,
‹	›, y5=1,
-2y 2=y4,
--3y -3=y2.

Since and 3 are alternative generators of the 2-Sylow subgroup, it follows that the two sets of relations give rise to the same isomorphism class.
Moreover,

y = y4 -1y =y4,
-2y 2=y
-3y 3=y4.

That is, in this case, 2 commutes with y and we do obtain a different isomorphic type.
Hence we have the following isomorphic types. (i)	G3= ‹ ,y ›, 4=1,y5=1;y = y2.
(ii)	G4= ‹ ,y ›, 4=1,y5=1;y = y4.
If c is an element of order 5 in G then a and b cannot both commute with c,


since G is non-Abelian. We have the following possibilities

(1) ac=ca,bc=c4b.

(2) ac=c4a,bc=c4b. the first relation entails:
abc=c4ab;

and the second ensure that abc=c16ab=c ab,
so that the two possibilities yield the same isomorphic type. Moreover, we may take one of a or b arbitrarily as the generator permuting with c. Hence we have
(iii)	G5= ‹a,b,c›, c5=1, a2=1, b2=1, (ab)2=1; ac=c4a, bc=cb.
= ‹x,y ›,	2=1, y10=1;	y =y9=y-1,

Where we set x=a, y=bc.

It follows that G5 is the dihedral group, D10, of order 20. We have proved the following

2.5.6 PROPOSITION

There are five types of groups of order 20, two are Abelian of which one is cyclic and three are non-Abelian.

2.5.7 SUMMARY OF DEFINING RELATIONS

(i)	G1 = ‹a ›, a20=1.
(ii)	G2 = ‹a,b ›, a5=1, b4=1; ab=ba.
(iii)	G3 = ‹ ,y › ,	4=1, y5=1;	y=y2
(iv)	G4= ‹ ,y › , y5=1,	4=1;	y=y4 .
(v)	G5 = ‹ ,y ›,	2=1, y10=1;	y =y-1.

Furthermore, suppose G is a non-Abelian group of order 28=22 x 7.

By Sylow’s Third Theorem there are 1 or 7 Sylow 2-subgroups and only 1 Sylow 7-subgroup,
‹y ›, y7=1,

which is normal in G.

The situation where we have 1 Sylow 2-subgroup will not be considered since G will be Abelian by Another Basis Theorem for Finite Abelian Groups. We consider 2-Sylow subgroups being either cyclic or the Klein 4-group.
Suppose any Sylow 2-subgroup is cyclic, say K= ‹ › , 4=1.
Since ‹ y ›, is normal in G we must have -1y =yt for some integer t.
Moreover, since

4=1

commutes with y, we deduce that

y = yt4

hence that

t4 1 (mod. 7).

A simple computation shows that t=1 or 6.
Since our group is non-Abelian we discard the possibility that t=1 and obtain a single isomorphic type.

(iii)	G3=‹ ,y ›;	4=1, y7=1;	-1y =y-1.
For the situation where the Sylow 2-subgroup is the Klein 4-group we may


write

K= ‹a,b ›, a2=1, b2=1, (ab)2 = 1.

Then a and b cannot both commute with y since G is non-Abelian.

We have the following possibilities

(1) ay = ya, by=y6b.

(2) ay = y6a, by=y6b.

The first relation shows that aby = y6ab,
and the second ensures that aby = y 36ab = yab.
That is, the two possibilities yield the same isomorphic type. Hence we have

(iv)	G4= ‹a,b,y ›, y7=1,a2=1,b2=1; (ab)2=1, ay=ya, byb=y-1.
We can write

G4 = ‹u,v › , u2=1, v14=1; uvu=v-1,
Where we set

u=b, v=ay.

In the later presentation, G4 is revealed as the dihedral group, D14 of order 28.
We have therefore proved the following


2.5.8 PROPOSITION

There are four classes of groups of order 28, one is cyclic, one is Abelian and two are non-Abelian.



2.5.9 SUMMARY OF DEFINING RELATIONS

(i)	G1 = ‹	› ,	28=1.
(ii)	G2 = ‹a,b ›, a4=1, b7=1; ab=ba.
(iii)	G3 = ‹ ,y ›,	4=1, y7=1;	y =y-1.
(iv)	G4 = ‹u,v ›, u2=1, v14; uvu=v-1.
Hans, Bettina and O’Brien (1999) announced a significant step in providing a solution to the group construction problem in its original form by developing practical algorithms to construct or enumerate the groups of a given order in one of their works. They enumerated the 49487365422 groups of order 210 and determined explicitly the 423164062 remaining groups of order at most 2000. Summary of their findings is listed in the table below.
In her work, (Manalo ,2001) presented a systematic method for classifying groups of small orders. Classifying groups usually arise when trying to distinguish the number of non-isomorphic groups of order n. She started by developing a sample run of Groups 32 program which shows the orders of the elements for the group S3 and C4. The groups 32 package can be accessed at http://www.math.ucsd.edu/ujwavrik the orders command tells us the number of elements of each orders of the group.

Hans (2001) introduced three practical algorithms to construct certain finite groups up to isomorphism. The first one can be used to construct all soluble groups of a given order. This method can be restricted to compute soluble groups with certain properties such as nilpotent, non-nilpotent or super soluble groups. The second algorithm can be used to determine the groups of order pnq with a normal Sylow subgroup for distinct primes p and q. The third method is a general method to construct finite group used to compute insoluble groups the above mainly targets groups of prime orders which are


useful in the area of determining the subnormal series. The list of their ten most difficult orders is shown in Table 7 below.

Table 2.3: Ten most difficult orders




	Order
	Number

	210
	49487365422

	29.3
	408641062

	29
	10494213

	28.5
	1116461

	28.3
	1090235

	28.7
	1083553

	27.3.5
	241004

	27.32
	157877

	28
	56092

	26-.33
	47937




Audu (1988b) found the number of transitive p-groups of degree p2. Audu and Momoh presented the classification of p-groups of degree p3.
Most of the work in group classification up to isomorphic looked at groups of orders that are powers of a prime. It therefore became pertinent to work at groups of orders a product of primes such as sp, spq where s,p and q are distinct primes with a view of determining their non-Abelian isomorphic types. The congruence relationship between these primes, that is for p  k (mod s) where k is an integer 1  k< s was mainly used. This helped to determine the number of non-Abelian isomorphic types in


each congruence class and the values of k that will guarantee non-existence of non- Abelian isomorphic type.



[bookmark: _TOC_250025]CHAPTER THREE
METHODS AND GENERATION OF NON-ABELIAN ISOMORPHIC TYPES


Groups factorizable into products of two primes s and p and s,p and q respectively were mainly considered. The use of the list of primes listed in Appendix 1 and the use of the conventional ways of determining the non-abelian isomorphic groups of such orders will also be made.
The scheme in Appendix II was developed to determine the numbers of integer t whose powers of s gave a remainder modulo 1 after division by p in each case.
It is written with HTML and PHP and PHP is Hyper Text Preprocessor and hosted at http://www.cenpece.org/modulo/. HTML is used because it was expected to run on a web browser which is the purpose of maximizing resources which are readily available on web browsers and can always be updated. PHP is a programming language which shares similar syntax with C++, C# and other generic languages. PHP runs seamlessly with database applications such as MySQL and Oracle Database.
It can be run on any kind of system with any form of internet connection or connection of an apache server.
The congruence modulo project can be extended to store a couple of values in the database to make it better for future usage.
Actually, when a group of order is n factorizable into two prime sp such that

p  1 (mod s) and through the relation ts    1 (mod p), the scheme gives all the possible values of r in the interval 1< t < p. We will, however, not only outline different values of t but will also put up defining relations of such non-Abelian isomorphic types that would be obtained from different values of r.
This was also done for cases where p  k (mod s) for k > 1.


3.0 NON ABELIAN ISOMORPHIC TYPES OF SOME GROUPS OF ORDER 2p.

Here the non-Abelian isomorphic types of some groups of order 2p, where (2, p) = 1 and p  1 (mod 2) were obtained. Actually primes numbers not equal to 2 are congruent to1 modulo 2. We shall be using elements a and b as generators of the groups until otherwise stated.
To obtain the non-Abelian group of order 6, we first observe that 6 = 2 x 3 and that a group G of order 6, can be isomorphic to direct product of two cyclic groups of orders 3 and 2. Hence G = {e, a, a2, b, ba, ba2}, where a  C3 such that a3 = e and b  C2 such that b2 = e

Since

b C3 and to obtain closure for the elements of G, we see that ab = ba or ba2,


but ab = ba will be ruled out since our interest is on the non-Abelian isomorphic type of G.
Therefore, for ab = ba2 we have

(ab)2 = ab ab = abba2 = aea2 = a3 = e.

Hence G  ‹ a › x ‹ b › such that a3 = b2 = e and ab = ba2.
For the group G of order 10 we follow similar steps as above to see that G can be of the direct products of cyclic groups C5 and C2 of orders 5 and 2 respectively.
Since if a5 = e = b2 then ab = ba2 or ba3 cannot satisfy closure property. That is if ab = ba2 then
(ab)2 = abab = ba2ab = ba3b

(ab)3 = (ab)2ab = ba3bab = ba3bba2 = ba5 = b (ab)4 = (ab)3 = bab = bba2 = a2
(ab)5 = (ab)4ab = a2ab = a3b and none gave the identity element.

Also for ab = ba3, (ab)2, (ab)3 , (ab)4 and (ab)5 cannot give the identity For a = ba4 , we have
(ab)2 = abab = ba4ab = b2 = e, the identity.

Hence G = ‹ a, b ›  C5 x C2 = ‹ a › x ‹ b ›.

This is a non-Abelian isomorphic type of a group G of order 10.


For a group G of order 14 = 2 x 7, we see that G  C7 x C2 But C7 = {e, a, a2, a3, a4, a5, a6} and
C2 = {e, b} with a5 = b2 = e.
Hence G = {e, a, a2, a3, a4, a5, a6, b, a, a2b, a3b, a4b, a5b, a6b}.


Since b

C7 which would have made it to have order different from 2, we show that


ab = ba2, ba3, ba4, ba5 or ba6. Close scrutiny shows that ab = ba6 and (ab)2 = abab = ba6ab = b2 = e.
Hence G = ‹ a, b ›  ‹ a › x ‹ b ›

and a7 = e = b2 , with ab = ba6 and (ab)2 = e. This gave a non-Abeian isomorphic type.
For a group G of order 22 = 11 x 2 we see that G = ‹ a , b ›  C11 x C2 with a11 = b2 = e , ab = ba10 and (ab)2 = ab ab = ba10ab = b2 =e.
We also observed that for any group of order 6, 14, or 22… that 22  1 (mod 3),	62  1 (mod 7) or 102  1 (mod 11) indicating that from
1< t < 7 or 1 < t < 11

and that t took the value p – 1 in each case. Also, 5  1 (mod 2),
7  1 (mod 2), and


11  1 (mod 2).

Our scheme showed that for any group of order n = 2p, where p is a prime, has only one value for t and this value is always p – 1 for distinct values of p.

3.1 NON-ABELIAN GROUPS OF ORDER n = 3p with 100 < p < 2000 and p  1(mod 3)

For groups of order n = 3p, our scheme gave the following results: If we take a and b to be elements of order 3 and p respectively,
i.e. a 3 = bp = 1, we have the following non-Abelian isomorphic types for each p:

For a group of order 21 = 3 x 7, we see that G = ‹ a, b ›  C7 x C3 with b7 = a3 = e , ba = ab2 and (ba)3 = e.
This is a non-Abelian isomorphic type.

Hence for a group of order 21 that 23  1 (mod 7). Here again t is within the range 1 < t < 7.
For any group G of order 39 = 3 x 13, we have that G = C13 x C3  ‹ a › x ‹ b ›
with b13 = a3 = e and ba = ab3 For closure we have
(ba)2 = ab3ab3 = ab2ab6 = abab9 = aab12 = a2b12 (ba)3 = baa2b12 = e
Again for ba = ab9, we have

(ba)2 = ab9ab9 = ab8ab5 = ab7ab = ab6ab10

= ab5ab6 = ab4ab2 = ab3ab11 = ab2ab7

= abab3 = a2b12 (ba)3 = baa2b12 = e
But 9 is a power of 3 and the first case stands.



For any group G of order 57 = 3 x 19, we have that

G = C19 x C3  a × b

with b19 = a3 = e and (i) ba = ab7 (ii) ba = ab11 where closure properties are as follows:
(i) (ba)2 = ab7ab7 = ab6ab14 = ab5ab2 = ab4ab9 = ab3ab16 = ab2ab4 = abab11

= a2b18.

(ba)3 = baa2b18 = e

(ii) ba = ab11 ;

(ba)2 = ab11ab11 = ab10ab3 = ab9ab14 = ab8ab6

= ab7ab17 = ab6ab9 = ab5ab = ab4ab12 = ab3ab4

= ab2ab15 =abab7 = a2b18. (ba)3 = baa2b18 = e

This shows that G is isomorphic as follows:


(i) G 

a  ×  b


with b19 = a3 = e and ba = ab7 , and


(ii) G 

a  ×  b


with b19 = a3 = e and ba = ab11.

1. For subgroups of orders (3)(109) we have


(i) G1 

a ×  b

; where a -1 ba = b 45



(ii) G2 

a ×  b

; where a -1 ba = b 63


2. For subgroups of orders (3)(139) we have


(i) G1 

a ×  b

; where a -1 ba = b 42



(ii) G2 

a ×  b

; where a -1 ba = b 96


3. For subgroups of orders (3)(199) we have


(i) G1 

a ×  b

; where a -1 ba = b 92



(ii) G2 

a ×  b

; where a -1 ba = b 106


4. For subgroups of orders (3)(229) we have


(i) G1 

a ×  b

; where a -1ba = b 94


3. For subgroups of orders (3)(409) we have


(i) G1 

a ×  b

; where a -1 ba = b 53



(ii) G2 

a ×  b

; where a -1 ba = b 355


4. For subgroups of orders (3)(439) we have


(i) G1 

a ×  b

; where a -1 ba = b 171


(ii) G2 a × b ; where a -1 ba = b 267

5. For subgroups of orders (3)(619) we have


(i) G1 

a ×  b

; where a -1 ba = b 252


(ii) G2  a × b ; where a -1 ba = b 366

6. For subgroups of orders (3)(739) we have


(i) G1 

a ×  b

; where a -1 ba = b 320



(ii) G2 

a ×  b

, a-1 ba = b418


7. For subgroups of orders (3)(829) we have

(i) G1  a × b ; where a -1 ba = b 125


(ii) G2 

a ×  b

; where a -1 ba = b 703


8. For subgroups of orders (3)(919) we have



(i) G1 

a ×  b

; where a -1 ba = b 52



(ii) G2 

a ×  b

; where a -1 ba = b 866


9. For subgroups of orders (3)(1009) we have


(i) G1 

a ×  b

; where a -1 ba = b 374



(ii) G2 

a ×  b

; where a -1 ba = b 634




10. For subgroups of orders (3)(1129) we have


(i) G1 

a ×  b

; where a -1 ba = b 387



(ii) G2 

a ×  b

; where a -1 ba = b 741


11. For subgroups of orders (3)(1279) we have


(i) G1 

a ×  b

; where a -1 ba = b 504



(ii) G2 

a ×  b

; where a -1 ba = b 774


12. For subgroups of orders (3)(1459) we have


(i) G1 

a ×  b

; where a -1 ba = b 339



(ii) G2 

a ×  b

; where a -1 ba = b 1119


13. For subgroups of orders (3)(1579) we have


(i) G1 

a ×  b

; where a -1 ba = b 639



(ii) G2 

a ×  b

; where a -1 ba = b 939


14. For subgroups of orders (3)(1699) we have

(i) G1  a × b ; where a -1 ba = b 397


(ii) G2 

a ×  b

; where a -1 ba = b 1301


15. For subgroups of orders (3)(1999) we have


 (
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(i) G1 

a ×  b

; where a -1 ba = b 808



(ii) G2 

a ×  b

; where a -1 ba = b 1190


16. For subgroups of orders (3)(127) we have


(i) G1 

a ×  b

; where a -1 ba = b 19



(ii) G2 

a ×  b

; where a -1 ba = b107


17. For subgroups of orders (3)(307) we have


(i) G1 

a ×  b

; where a -1 ba = b 17



(ii) G2 

a ×  b

; where a -1 ba = b 289.


18. For subgroups of orders (3)(457) we have


(i) G1 

a ×  b

; where a -1 ba = b 133



(ii) G2 

a ×  b

; where a -1 ba = b 323


19. For subgroups of orders (3)(577) we have


(i) G1 

a ×  b

; where a -1 ba = b 213



(ii) G2 

a ×  b

; where a -1 ba = b 363


20. For subgroups of orders (3)(757) we have


(i) G1 

a ×  b

; where a -1 ba = b 27



(ii) G2 

a ×  b

; where a -1 ba = b 729


21. For subgroups of orders (3)(907) we have


(i) G1 

a ×  b

; where a -1 ba = b 384



(ii) G2 

a ×  b

; where a -1 ba = b 522


22. For subgroups of orders (3)(1117) we have


(i) G1 

a ×  b

; where a -1 ba = b 120


 (
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(ii) G2 

a ×  b

; where a -1 ba = b 996


23. For subgroups of orders (3)(1237) we have

(i) G1  g a × b ; where a -1 ba = b 300


(ii) G2 

a ×  b

; where a -1 ba = b 936


24. For subgroups of orders (3)(1597) we have


(i) G1 

a ×  b

; where a -1 ba = b 222



(ii) G2 

a ×  b

; where a -1 ba = b 1374


25. For subgroups of orders (3)(1747) we have


(i) G1 

a ×  b

; where a -1 ba = b 371




26. For subgroups of orders (3)(1987) we have


(i) G1 

a ×  b

; where a -1 ba = b 647



(ii) G2 

a ×  b

; where a -1 ba = b 1339


27. For subgroups of orders (3)(103) we have


(i) G1 

a ×  b

; where a -1 ba = b 46



(ii) G2 

a ×  b

; where a -1 ba = b 56


28. For subgroups of orders (3)(223) we have


(i) G1 

a ×  b

; where a -1 ba = b 31



(ii) G2 

a ×  b

; where a -1 ba = b 183


29. For subgroups of orders (3)(433) we have


(i) G1 

a ×  b

; where a -1 ba = b 198



(ii) G2 

a ×  b

; where a -1 ba = b 234


30. For subgroups of orders (3)(643) we have


(i) G1 

a ×  b

; where a -1 ba = b 177



(ii) G2 

a ×  b

; where a -1 ba = b 465


31. For subgroups of orders (3)(883) we have


(i) G1 

a ×  b

; where a -1 ba = b 337



(ii) G2 

a ×  b

; where a -1 ba = b545


32. For subgroups of orders (3)(1093) we have


(i) G1 

a ×  b

; where a -1 ba = b 151



(ii) G2 

a ×  b

; where a -1 ba = b 941


33. For subgroups of orders (3)(1123) we have


(i) G1 

a ×  b

; where a -1 ba = b 33



(ii) G2 

a ×  b

; where a -1 ba = b 1089


34. For subgroups of orders (3)(1303) we have


(i) G1 

a ×  b

; where a -1 ba = b 95



(ii) G2 

a ×  b

; where a -1 ba = b 1207


35. For subgroups of orders (3)(1453) we have


(i) G1 

a ×  b

; where a -1 ba = b 693



(ii) G2 

a ×  b

; where a -1 ba = b 759


36. For subgroups of orders (3)(14833) we have


(i) G1 

a ×  b

; where a -1 ba = b 38



(ii) G2 

a ×  b

; where a -1 ba = b 1444


37. For subgroups of orders (3)(1693) we have



(i) G1 

a ×  b

; where a -1 ba = b 433



(ii) G2 

a ×  b

; where a -1 ba = b 1259


38. For subgroups of orders (3)(1783) we have


(i) G1 

a ×  b

; where a -1 ba = b 193



(ii) G2 

a ×  b

; where a -1 ba = b 1589


39. For subgroups of orders (3)(1993) we have


(i) G1 

a ×  b

; where a -1 ba = b 312



(ii) G2 

a ×  b

; where a -1 ba = b 1680


We summarize the above findings in as follows:


3.2 [bookmark: _TOC_250024]LEMMA

If 100 < p < 2000 and p  1 (mod 3) then groups of order n = 3p have at most two non - Abelian isomorphic types.
PROOF: This follows from the examples generated above. For a group of order

n = 3p, p  1 (mod 3) there are only two values of t such that t3  1 (mod p), t1 and t2, say. Any other value for t ≠ t1 or t2 must be a must a power of one of the t1 or t2 . Hence such group has two non-abelian isomorphic types

3.3 [bookmark: _TOC_250023]FOR SUBGROUPS OF ORDER 3p WHERE 2000 < p < 4000

Further application of our scheme on groups of order n = 3p, for distinct primes, p are as follows:
For each prime p the following non-Abelian types, together with their defining relations are displayed (where a and b are two generators such that a3 = bp = 1):
1. For subgroups of order (3)(2011) we have


(i) G1 

a ×  b

; where a -1 ba = b 205



(ii) G2 

a ×  b

; where a -1 ba = b 1805


2. For subgroups of order (3)(2131) we have


(i) G1 

a ×  b

; where a -1 ba = b 468



(ii) G2 

a ×  b

; where a -1 ba = b 1662


3. For subgroups of order (3)(2251) we have


(a) G1 

a  ×  b

; where a -1 ba = b 708



(b) G2 

a ×  b

; where a -1 ba = b 1542


4. For subgroups of order (3)(2311) we have


(i) G1 

a ×  b

; where a -1 ba = b 882



(ii) G2 

a ×  b

; where a -1 ba = b 1428


5. For subgroups of order (3)(2371) There are:


(i) G1 

a ×  b

; where a -1 ba = b 464



(ii) G2 

a ×  b

; where a -1 ba = b 1906


6. For subgroups of order (3)(2671) we have


(i) G1 

a ×  b

; where a -1 ba = b 544



(ii) G2 

a ×  b

; where a -1 ba = b 2126




7. For subgroups of order (3)(2971) we have


(i) G1 

a ×  b

; where a -1 ba = b 54



(ii) G2 

a ×  b

; where a -1 ba = b 2916


8. For subgroups of order (3)(3001) we have


(i) G1 

a ×  b

; where a -1 ba = b 934


 (
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(ii) G2 

a ×  b

; where a -1 ba = b 2066


9. For subgroups of order (3)(3181) we have


(i) G1 

a ×  b

; where a -1 ba = b 440



(ii) G2 

a ×  b

; where a -1 ba = b 2740


10. For subgroups of order (3)(3331) we have

(i) G1  a × b ; where a -1 ba = b 1463


(ii) G2 

a ×  b

; where a -1 ba = b 1867


11. For subgroups of order (3)(3511) we have


(i) G1 

a ×  b

; where a -1 ba = b 59



(ii) G2 

a ×  b

; where a -1 ba = b 3481


12. For subgroups of order (3)(3691) we have


(i) G1 

a ×  b

; where a -1 ba = b 474



(ii) G2 

a ×  b

; where a -1 ba = b 3216


13. For subgroups of order (3)(3931) we have


(i) G1 

a ×  b

; where a -1 ba = b 617



(ii) G2 

a ×  b

; where a -1 ba = b 3313



3.4 [bookmark: _TOC_250022]LEMMA

For groups of order n = 3p, where 2000 < p < 4000, p  1 (mod 3) there can be a only two non-abelian isomorphic type.
Proof: This is just what we proved in Lemma 3.2.


3.5 GROUPS OF ORDER 5p WHERE p  1(mod 5) AND 100 < p < 2000.

In this case the following situation occur for a5 = bp = 1, where a and b are generators


of order 5 and p respectively.

1. For subgroups of order (5)( 131), we have


i. G1 

a ×  b

, where a-1ba =b53



ii. G2 

a ×  b

where a -1ba = b58



iii. G3 

a ×  b

where a-1ba = b61



iv. G4 

a ×  b

where a-1ba = b89


2. For subgroup of order (5)(251) we have


i. G1 

a ×  b

, where a-1ba =b20



ii. G2 

a ×  b

where a -1ba = b113



iii. G3 

a ×  b

where a-1ba= b149



iv. G4 

a ×  b

where a-1ba=b129


3. For subgroups of order (5)(251) we have


i. G1 

a ×  b

, where a-1ba =b86



ii. G2 

a ×  b

where a -1ba = b90



iii. G3 

a ×  b

where a-1ba= b153



iv. G4 

a ×  b

where a-1ba=b232


4. For subgroups of order (5)(461) we have


i. G1 

a ×  b

, where a-1ba =b88



ii. G2 

a ×  b

where a -1ba = b114



iii. G3 

a ×  b

where a-1ba= b351



iv. G4 

a ×  b

where a-1ba=b368


5. For subgroups of order (5)(491) we have


i. G1 

a ×  b

, where a-1ba =b101



ii. G2 

a ×  b

where a -1ba = b183



iii. G3 

a ×  b

where a-1ba= b316



iv. G4 

a ×  b

where a-1ba=b381


6. For subgroup of order (5)(641) we have


i. G1 

a ×  b

, where a-1ba =b357



ii. G2 

a ×  b

where a -1ba = b47



iii. G3 

a ×  b

where a-1 ba= b531



iv. G4 

a ×  b

where a-1 ba=b562


7. For subgroups of order (5)(881) we have


i. G1 

a ×  b

, where a-1ba =b268



ii. G2 

a ×  b

, where a -1ba = b286



iii. G3 

a ×  b

, where a-1ba= b463



iv. G4 

a ×  b

, where a-1ba=b744


8. For subgroup of order (5)(941) we have


i. G1 

a ×  b

, where a-1ba =b349



ii. G2 

a ×  b

gp{a} x gp{b}, where a -1ba = b364



iii. G3 

a ×  b

, where a-1ba= b412



iv. G4 

a ×  b

, where a-1ba=b756


9. For subgroups of order (5)(1061) we have


i. G1 

a ×  b

, where a-1ba =b220



ii. G2 

a ×  b

, where a -1ba = b381



iii. G3 

a ×  b

, where a-1ba= b655



iv. G4 

a ×  b

, where a-1 ba=b862


10. For subgroups of order (5)(1301) we have


i. G1 

a  ×  b

, where a-1ba =b163



ii. G2 

a  ×  b

, where a -1ba = b549



iii. G3 

a  ×  b

, where a-1ba= b870



iv. G4 

a  ×  b

, where a-1ba=b1019


11. For subgroups of order (5)(1511) we have


i. G1 

a  ×  b

; where a-1ba =b534



ii. G2 

a  ×  b

; where a -1ba = b631



iii. G3 

a  ×  b

; where a-1ba= b768



iv. G4 

a  ×  b

; where a-1ba=b1088


12. For subgroups of order (5)(1811) we have


i. G1 

a  ×  b

, where a-1ba =b433



ii. G2 

a  ×  b

, where a -1ba = b956



iii. G3 

a  ×  b

, where a-1ba= b1040



iv. G4 

a  ×  b

, where a-1 ba=b1192


13. For subgroups of order (5)(1931) we have


i. G1 

a  ×  b

, where a-1ba =b1101



ii. G2 

a  ×  b

, where a -1ba = b1410



iii. G3 

a  ×  b

, where a-1ba= b1467



3.6 [bookmark: _TOC_250021]LEMMA

If 100 < p < 2000, p  1 (mod 5), there are at most four non-Abelian Isomorphic types of groups of order 5p.
PROOF: This follows from the examples generated above. A group of order n = 5p, p  1 (mod 5) has only four values of t such that t5  1 (mod p), t1, t2, t3 and t4, say. Any other value for t ≠ t1, t2, t3, or t4 must be a must a power of any one of them. Hence such group has at most four non-abelian isomorphic types


3.7 [bookmark: _TOC_250020]FOR GROUPS OF ORDER n = 5p, FOR 2000 < p < 4000.

Here we also assume two element generators a and b such that

a5 = bp =1 and p  1 (mod 5). The following non-Abelian types are obtained:

1. For subgroups of order (5)(2011) we have


(i) G1 

a ×  b

; where a -1 ba = b 798



(ii) G2 

a  ×  b

; where a -1 ba = b 1328



(iii) G3 

a ×  b

; where a -1 ba = b 1948



(iv) G4 

a  ×  b

; where a -1 ba = b 1958


2. For subgroups of order (5)(2131) we have


(i) G1 

a ×  b

; where a -1 ba = b 832



(ii) G2 

a  ×  b

; where a -1 ba = b 1734



(iii) G3 

a ×  b

; where a -1 ba = b 1780



(iv) G4 

a  ×  b

; where a -1 ba = b 2046


3. For subgroups of order (5)(2251) we have



(i) G1 

a ×  b

; where a -1 ba = b 361



(ii) G2 

a  ×  b

; where a -1 ba = b 2014



(iii) G3 

a ×  b

; where a -1 ba = b 2232


4. For subgroups of order (5)(2341) we have


(i) G1 

a ×  b

; where a -1 ba = b 735



(ii) G2 

a  ×  b

; where a -1 ba = b 809



(iii) G3 

a ×  b

; where a -1 ba = b 1342


5. For subgroups of order (5)(2521) we have


(i) G1 

a ×  b

; where a -1 ba = b 757



(ii) G2 

a  ×  b

; where a -1 ba = b 782



(iii) G3 

a ×  b

; where a -1 ba = b 1442



(iv) G4 

a  ×  b

; where a -1 ba = b 2060


6. For subgroups of order (5)(2731) we have


(i) G1 

a ×  b

; where a -1 ba = b 742



(ii) G2 

a  ×  b

; where a -1 ba = b 1233


7. For subgroups of order (5)(2851) we have


(i) G1 

a ×  b

; where a -1 ba = b 45



(ii) G2 

a  ×  b

; where a -1 ba = b 887



(iii) G3 

a ×  b

; where a -1 ba = b 2744


8. For subgroups of order (5)(3121) we have


(i) G1 

a ×  b

; where a -1 ba = b 190



(ii) G2 

a  ×  b

; where a -1 ba = b 2545



(iii) G3 

a ×  b

; where a -1 ba = b 3081


9. For subgroups of order (5)(3181) we have


(i) G1 

a ×  b

; where a -1 ba = b 425



(ii) G2 

a  ×  b

; where a -1 ba = b 1714


10. For subgroups of order (5)(3301) we have


(i) G1 

a ×  b

; where a -1 ba = b 454



(ii) G2 

a  ×  b

; where a -1 ba = b 1454



(iii) G3 

a  ×  b

; where a -1 ba = b 1476



(iv) G4 

a ×  b

; where a -1 ba = b 3217


11. For subgroups of order (5)(3391) we have


(i) G1 

a ×  b

; where a -1 ba = b 926



(ii) G2 

a  ×  b

; where a -1 ba = b 1805



(iii) G3 

a  ×  b

; where a -1 ba = b 2049



(iv) G4 

a ×  b

; where a -1 ba = b 2944


12. For subgroups of order (5)(3931) we have


(i) G1 

a ×  b

; where a -1 ba = b 1547.



3.8 [bookmark: _TOC_250019]LEMMA

For groups of order n = 5p, where 2000 < p < 4000, p  1 (mod 5) there can be only four non-abelian isomorphic type.
PROOF: From our examples above, this is just the proof of Lemma 3.6 above.


3.9 FOR GROUPS OF ORDER n = 7p SUCH THAT p  1 (mod 7) AND 20 < p < 2000.

For any group G of order 203 = 7 x 29 we will have

G  a  ×  b ;

with b29 = a7 = e and for different values of in the defining relation ba = abt we obtain the following:
(i) ba = ab7,

(ii) ba = ab16 ,

(iii) ba = ab20,

(iv) ba = ab23,

(v) ba = ab24 and

(vi) ab = ab25

For clarity, we show the closure properties of (i) and (ii) as follows: with ba = ab7,
(ba)2 = ab7ab7 = ab6ab14 = ab5ab21 = ab4ab28 = ab3ab6 = ab2ab13 = abab20 = a2b27 (ba)3 = a2b27ab7 = … = a3b22
(ba)4 = a3b22ab7 = … = a4b16

(ba)5 = a4b16ab7 = a4b15ab14 = … = a5b3 (ba)6 = a5b3ab7 = … = a6b28
(ba)7 = baa6b28 = e

With ba = ab16 we have

(ba)2 = ab16ab16 = … = a2b11 (ba)3 = a2b11ab16 = … = a3b18 (ba)4 = a3b18ab16 = … = a4b14 (ba)5 = a4b14ab16 = … = a5b8

(ba)6 = a5b8ab16 = … = a6b28 (ba)7 = baa6b28 = e.

With ba = ab20

(ba)2 = ab20ab20 = ab19ab11 = … = a2b14 (ba)3 = a2b14ab20 = … = a3b10
(ba)4 = a3b10ab20 = a3b9ab11 = … = a4b17 (ba)5 = a4b17ab20 = … = a5b12
(ba)6 = a5b12ab20 = a5b12ab20 = a5b11ab11 … = a6b28 (ba)7 = baa6b28 = e.

With ba = ab23, we have

(ba)2 = ab23ab23 = ab22ab17 = … = a2b (ba)3 = a2bab23 = a3b17
(ba)4 = a3b17ab23 = a3b16ab17 = a3b15ab11 = … = a4b8 (ba)5 = a4b8ab23 = a4b7ab17 = … = a5b4
(ba)6 = a5b4ab23 = a5b3ab17 = a5b2ab11 = … = a6b28

 (ba)7 = baa6b28 = e.

Similarly for a group of order 21 that 23  1 (mod 7). Here again r is within the range 1 < t < 7.

With ba = ab24, similar approach shows that ba = ab24 is of order 7.
Here we make use of the fact that each subgroup is a two element generator, a and b say, with a 7 = bp = 1.
1.	For p = 29 and for a subgroup of order (7) (29) we have the following:



G1 

a ×  b

;	with a-1 ba = bt


Where t = 7, 16, 23, 24, 25

It is easily verified that each of the elements ba=ab7, ba = ab16, ba= ab20, ba=ab23, ba=ab24, and ba=ab25 have order 7 in their respective non-Abelian
	
	groups.  That  is  to  say  that  the  elements   ba = abt1 , ba = abt2  ,. 	,
	form

	
	different non-Abelian groups of order sp have order s respectively.
	

	2.
	For p = 43 and for a subgroup of (7) (43) we have the following
	

	
	G1  a × b ;	with a-1 ba = bt
	

	
	Where t = 4, 11, 21, 35, 41
	

	3.
	For p = 71 and for a subgroup of order (7) (71) we have
	

	
	G1  a × b ;	with a-1 ba = bt
	

	
	Where t =30, 32, 37, 45, 48
	

	4.
	For p = 113 and for subgroup of order (7) (113) have:
	

	
	G1  a × b ;	with a-1 ba = bt
	

	
	Where t =16, 28, 30, 49, 106, 109
	

	6.
	For p = 127 and for subgroup of order (7) (127) we have.
	

	
	G1  a × b ;	with a-1 ba = b2 or b4 or b8 or b64
	

	
	Any of the options generate the same group since 4 = 22 and 8 = 23,

32 = 25, 64 = 26
	

	6.
	For p = 197 and for subgroup of order (7) (197) we have;
	

	
	G1  a × b ;	with a-1 ba = bt
	

	

7.
	where t = 36, 104, 114, 164, 178

For p = 211 and for subgroups of order (7) (211) and for a7 = b211 =
	

1 we

	
	have;
	





G1 

a ×  b

;	with a-1 ba = bt


where t = 58, 123, 144, 148, 171

8. For p = 239 and for subgroups of order (7) (239) we have


G1 

a ×  b

;	with a-1 ba = bt


where t = 10, 24, 44, 98

9. For p = 281 and for subgroup of order (7) (281) and for a7 = b281 =1


G1 

a  ×  b

;	with a-1 ba = bt


Where t = 59, 79, 109, 165, 181

10. For p = 449 and for a subgroup of order (7) (449) we have;


G1 

a ×  b

;	with a-1 ba = bt


Where t = 18, 176, 285, 444

It can be observed that t1 = 18 and t4 =324 = 182.
11. For p = 463 and for a subgroup of order (7) (463) we have


G1 

a  ×  b

;	with a-1 ba = bt


Where t = 34, 118, 230, 286, 308, 312

12. For p = 547 and for a subgroup of order (7) (547) we have;


G1 

a  ×  b

;	with a-1 ba = bt


Where t = 9, 182, 304, 520, 533, 544

13. For p = 617 and for a subgroup of order (7) (617) we have;


G1 

a  ×  b

;	with a-1 ba = bt


where t = 142, 408, 420

14. For p = 701 for subgroups of order (7) (701), we have;


G1 

a  ×  b

;	with a-1 ba = bt


where t = 19, 167, 636


15. For p = 743 for subgroup of order (7) (743), we have;


G1 

a  ×  b

;	with a-1 ba = bt


where t = 111, 328, 450, 590

16. For p = 757 and for subgroup of order (7) (757) we have;


G1 

a  ×  b

;	with a-1 ba = bt


where t = 59, 62, 77, 232, 559

17. For p = 953 and for a subgroup of order (7) (953), we have;


G1 

a  ×  b

;	with a-1 ba = bt


where t = 508, 528, 822, 559

18. For p = 967 and for a subgroup order (7) (967), we have;


G1 

a  ×  b

;	with a-1 ba = bt


where t = 97, 226, 648, 772, 792

19. For p = 1093, and for a subgroup of order (7) (1093), we have;


G1 

a  ×  b

;	with a-1 ba = bt


where t = 3, 9, 27, 81, 1036

Since 81 = 34, 27 = 33 and 9 = 32, we see that t1, t2, t3 and t4 give rise to the same non-Abelian isomorphic type. Hence we have only two non- Abelian isomorphic types.
20. For p = 1163, and for a subgroup of order (7) (1163), we have;


G1 

a  ×  b

;	with a-1 ba = bt


Where t = 44, 383

21. For p = 1933 and for a subgroup of order (7) (1933), we have;


G1 

a  ×  b

;	with a-1 ba = bt


Where t = 1000, 1069, 1285



3.10 [bookmark: _TOC_250018]LEMMA

Groups of order n = 7p where p  1(mod 7) have at most six non-Abelian isomorphic types.
PROOF: This is similar to the proof for groups of order 3p and 5p except that t has at most six distinct values t1,t2, t3, t4, t5 and t6. Any other value will be a prime power of one of the ti’s for i = 1, 2, 3, 4, 5, 6.

3.11 [bookmark: _TOC_250017]FOR SUBGROUPS OF ORDER 11p

1. For those primes p such that p  1 (mod. 11) we give few results of such subgroups of order 11p.   We also assume two element generators, a b say, such that a11 = bp = 1
For p = 23 and for subgroups of order (11) (23) we have;


G1 

a  ×  b

; with a-1 ba = bt


where t = 2, 3, 12, 13, 18

2. For p = 67 and for subgroups of order (11) (67) we have the following non- Abehian types:
G  g a × b ; with a-1 ba = bt

where t = 9, 14, 15, 22, 24, 25, 40, 59, 62, 64

3. For p = 331 and for a subgroups of order (11) (331) we have;

G  a × b ; with a-1 ba = bt

where t = 4, 80, 85, 111, 120, 167, 180, 270, 274, 293

4. For p = 353 and for a subgroups of order (11) (353) we have;

G  a × b ; with a-1 ba = bt

where t = 22, 58, 131, 140, 185, 187, 217, 231, 256, 337


5. For p = 419 and for a subgroups of order (11) (419) we have;

G  a × b ; with a-1 ba = bt

where t = 13, 59, 69, 102, 129, 152, 169, 300, 334, 348

6. For p = 463 and for a subgroups of order (11) (463) we have;

G  a × b ; with a-1 ba = bt

where t = 15, 55, 134, 158, 247, 337, 356, 362, 425


3.12 [bookmark: _TOC_250016]LEMMA

Groups of order 11p where p  1 (mod 11) have at most ten non-Abelian isomorphic types.
PROOF: This is similar to the proof for groups of order 3p and 5p except that t has at most six distinct values t1,t2, t3, t4, t5 t6, t7, t8, t9, and t10 Any other value for t will be a prime power of one of the ti’s for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

3.13 [bookmark: _TOC_250015]FOR SUBGROUPS OF ORDER 13p, WHERE p  1 (mod 13)

We also assume that such subgroups are generated by two elements a and b such that a13 = bp = 1
1. For p = 53 and for subgroups of order (13) (53) we have

G  a × b ; with a-1 ba = bt

where t = 10, 13, 15, 16, 24, 28, 36, 42, 44, 46, 47, 49

2. For subgroups of order (13) (79) we have

G  a × b with a-1 ba = bt

where t = 8, 10, 18, 21, 22, 38, 46, 52, 62, 64, 65, 67

3. For subgroups of order (13)(131) we have

G  a × b ; with a-1 ba = bt


where t = 39, 45, 52, 60, 62, 63, 80, 84, 99, 107, 112, 113

4. For subgroups of order (13) (443) we have

G  g a × b ; with a-1 ba = bt

where t = 35, 38, 56, 135, 184, 188, 238, 339, 347, 356, 378, 383


3.14 [bookmark: _TOC_250014]LEMMA
Groups of order n = 13p for p  1(mod 13) have at most twelve non-Abelian isomorphic types.
PROOF: This is similar to the proof for groups of order 3p and 5p except that t has at most six distinct values t1,t2, t3, t4, t5 t6, t7, t8, t9, t10, t11, and t12. Any other value for t will be a prime power of one of the ti’s for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

3.15 GROUPS OF ORDER n = sp WITH NO NON-ABELIAN ISOMORPHIC TYPES.

We, however, make a comment on why the groups of order n = sp such that p is not congruent to 1 modulo s and reasons why they do not have non-abelian isomorphic types.
To do this a group of order 15 will be considered first.


Let

G  15 3x5. G has only one Sylow 5 - subgroup H, say, which is normal in G.


Let H and K be cyclic subgroups of order 5 and 3 respectively. We have that

H  K = {e}. Again, any subgroup containing H and K has a multiple of 15. Hence

|H x K|=15, i.e. H x K = G.

Therefore, G = H x K implies that G = C5 x C3  C15

Hence G is cyclic and therefore Abelian.   Supposing a and b are generators of G. Then ba = abt where t ≠1 would generate a non-Abelian isomorphic type. This is not possible as none of the values 2, 3 and 4 ensured that abt has order 5 or 3.
Note that 52 (mod. 3).


We similarly looked at groups of order 35 = 5 x 7. Again, it is noticed that 7 is congruent to 2 modulo 5 and hence such does not have a non-abelian isomorphic type. A group of order 65 = 5 x 13 has the same behavior as 13 is congruent to 3 modulo 5.

With our scheme we outline the following examples:


For groups of order 5p where p ≡ k (mod 5), k > 1 especially where k = 4. We have the following few values for t:
For subgroups of order 5p we have for p  4 (mod 5) the following:

1. For subgroup of order (5)(1999) with a5 = b1999 = 1, t = 1813;

2. For sub group of order (5)(3079) with a5 =b3559 =1, we have t = 2887;

3. For sub group of order (5)(3559) with a5 = b3559 = 1, we have t = 1893 Hence no value of t will ensure closure for ab = bta
We will also be considering subgroups that are generated by two elements a and b such that a7 = bp = 1 but p is not congruent to 1 modulo 7.
1. For p = 373 and for a subgroup of order (7) (373), we have t = 259, 281;

2. For p = 401 and for a subgroup of order (7) (401), we have t = 265, 357;

3. For p = 457 and for a subgroup of order (7) (457), we have t = 237, 305, 442;

4. For p = 541 and for a subgroup of order (7) (541), we have t = 463;

5. For p = 653 and for a subgroup of order (7) (653), we have t = 614;

6. For p = 571 and for a subgroup of order (7) (571), we have t = 741;

7. For p = 1283 and for a subgroup of order (7) (1283), we have t = 714, 1097;

8. For p = 1297and for a subgroup of order (7) (1297), we have t = 321;

9. For p = 1493 and for a subgroup of order (7) (1493), we have t = 835, 1205;

10. For p = 1619 and for a subgroup of order (7) (1619), we have t = 534, 837, 1359.


11. For p =1787 and for a subgroup of order (7) (1787), we have t = 1100, 1393;

12. For p =1871 and for a subgroup of order (7) (1871), we have t = 478, 667, 806, 1747
13. For p = 1995 and for a subgroup of order (7) (1995), we have t = 1289.

No non-Abelian isomorphic type was obtained due to inability of closure property to be satisfied.

For Primes p such that p  3 (mod 7) the following values of t were obtained:

1. For p = 521 and for subgroup of order (7) (521) and for a7 = b521 = 1, we have t = 345;
2. For p = 647 and for subgroups of order (7) (647) and for a7 = b647 = 1, we have t = 259;
3. For p = 829 and for subgroups of order (7) (879) and for a7 = b829 = 1, we have t = 337, 826;
4. For p = 997 and for subgroups of order (7) (997) and for a7 = b997 = 1, we have t = 730;
5. 	For p = 1109 and for subgroups of order (7) (1109) and for a7 = b1109 = 1, we have t = 946, 989;
6. For p = 1277 and for subgroups of order (7) (1277) and for a7 = b1277 = 1, we have t = 838;
7. For p = 1319 and for subgroups of order (7) (1319) and for a7 = b1319 = 1, we have t = 727;
8. For p = 1571 and for subgroups of order (7) (1571) and for a7 = b1571= 1, we have t = 397, 985;
9. For p = 1613 and for subgroups of order (7) (1613) and for a7 = b1613= 1, we have t = 1535;

10. For p = 1669 and for subgroups of order (7) (1669) and for a7 = b1669= 1, we have t = 1031, 1100;
11. For p = 1697 and for subgroups of order (7) (1697) and for a7 = b1697= 1, we have t = 1619;
12. For p = 1823 and for subgroups of order (7) (1823) and for a7 = b1823= 1, we have t = 695;
13. For p = 1879 and for subgroups of order (7) (1879) and for a7 = b1879= 1, we have t = 391, 227;
14. For p = 1849 and for subgroups of order (7) (1849) = 1, we have t = 1340, 1532, 1788.

Furthermore, for primes, p say, such that p  4 (mod 7) the following values for are obtained:
1. For p = 263 and for subgroups of order (7) (263) and for a7 = b263 = 1, we have t = 225;
2. For p = 389 and for subgroups of order (7) (389) and for a7 = b389 = 1, we have t = 233;
3. For p = 487 and for subgroups of order (7) (487) and for a7 = b487 = 1, we have t = 485;
4. For p = 557 and for subgroups of order (7) (557) and for a7 = b557 = 1, we have t = 433;
5. For p = 907 and for subgroups of order (7) (907) and for a7 = b907 = 1, we have t = 687, 786;
6. For p = 1481 and for subgroups of order (7) (1481) and for a7 = b1481 = 1, we have t = 1361;
7. For p = 1831 and for subgroups of order (7) (1831) and for a7 = b1831 = 1, we


have t = 1578;

8. For p = 1901 and for subgroups of order (7) (1901) and for a7 = b1901 = 1, we have t = 618;
9. For p = 1999 and for subgroups of order (7) (1999) and for a7 = b1999 = 1, we have t = 1033, 1156, 1409.

For Primes p such that p  5 (mod 7), the following values of t which equally failed the closure property were obtained:
1. For p = 313 and for subgroups of order (7) (313) and for a7 = b313 = 1, we have t = 197;
2. For p = 439 and for subgroups of order (7) (439) and for a7 = b439 = 1, we have t = 315;
3. For p = 523 and for subgroups of order (7) (523) and for a7 = b523 = 1, we have t = 402, 479;
4. For p = 593 and for subgroups of order (7) (593) and for a7 = b593 = 1, we have t = 521;
5. For p = 677 and for subgroups of order (7) (677) and for a7 = b677 = 1, we have t = 395, 610;
6. For p = 1789 and for subgroups of order (7) (1489) and for a7 = b1489 = 1, we have t = 341;
7. For p = 1559 and for subgroups of order (7) (1559) and for a7 = b1559 = 1, we have t = 715;
8. For p = 1951 and for subgroups of order (7) (1951) and for a7 = b1783 = 1, we have t = 433;

For those Primes p in the Congruence Class of 6 modulo 7 the following values for t

were obtained for a7 = bp =1:

1. For p = 223 and for subgroups of order (7) (223) we have t = 197;

2. For p = 461 and for subgroups of order (7) (461) we have t = 355;

3. For p = 587 and for subgroups of order (7) (587) we have t = 443;

4. For p = 601 and for subgroups of order (7) (601) we have t = 513;

5. For p = 769 and for subgroups of order (7) (769) we have t = 683;

6. For p = 1693 and for subgroups of order (7) (1693) we have t = 683, 1292;

7. For p = 1777 and for subgroups of order (7) (1777) we have t = 213;

8. For p = 1847 and for subgroups of order (7) (1847) we have t = 608, 926;

9. For p = 1889 and for subgroups of order (7) (1889) we have t = 386;

10. For p = 1973 and for subgroups of order (7) (1973) we have t = 1972; From the examples outlined above, we state the following:

3.16 [bookmark: _TOC_250013]LEMMA
Any group of order n = sp where p is not congruent to 1 modulo s does not have a non-Abelian isomorphic type since none of the values for t can satisfy closure property for ba = abt as ts is not congruent to 1 modulo p. Hence there cannot be a non-Abelian isomorphic type.
🗑🗊🗍🖷 ☒🖠🖝 🖑🗴🖑🗉🖛👈🖝🖢🖡🖛🖑 🖡⮽🗴🖣🗴☑🗸🖠🖡👉 ☒🙱🗸🖝⮽ 🗴🖞 🖟☑🗴⮾🗸
⮽ 🗴🖞 🗴☑🖜🖝☑   ⑤   🖓 ⑩⑦⑧🗊In considering groups of order n = s(pq), groups of order 30, 42, and 70 were first treated. For consistency, x, y and z were used as generators and z-1xyz = (xy)t where different values of t ≠ 1 will give different non-
Abelian isomorphic types that can be obtained.


For The Non-Abelian Types of Groups of Order 30, it can be seen from that

30 = 5 x 3 x 2. Since every finite Abelian group is a direct sum of primary cyclic groups there exists only one type of Abelian group of order 30 and this type is


necessarily cyclic by Theorem (1.4.11). For the case where G is non-Abelian and of order 30, by Theorem (1.4.10), G has 1 or 6 subgroups of order 5 and 1 or 10 subgroups or order 3. It is obvious that a group of order 30 cannot have 6 subgroups of order 5 and 10 subgroups of order 3 at the same time.
Hence any group of order 30 must have either its Sylow 5 - subgroup or its Sylow 3 - subgroup normal in G.


Hence if

H = x

: x 5 = 1 and


H = y : y3 = 1.

Either H or K is normal in G. Hence

HK = KH


is a subgroup of G.

By factor theorem,


HK  15. Since any group of order 15 is Abelian and by (2.2), it


follows than that

xy  yx .


Hence, we look at the situation where


G = xy, z

:(xy)15  = 1, z2 = 1



Since the subgroup

HK = xy

has index 2 in G, it must therefore be normal in G.


Hence z x yz = ( xy)t, where t2 ≡ 1 (mod 15)
and t = 1, 4, 11,and 14.

Since t = 1 implies that G is Abelian, we start from t = 4.

Therefore the following isomorphic type results

(i) G1 = ‹xy,z›, (xy)15 = 1, z2 = 1, zxyz = (xy)4 = x-1y

= ‹x,y,z›,x5 = y3 = z2 = 1, zxz = x-1

xy  yx, yz  zy

= ‹ x,z› × ‹ y ›
= D5xC3

Setting t = 11 the following relations are obtained:

(ii) G2 = ‹xy,z›, (xy)15 = 1, z2 = 1, zxyz = (xy)11 = xy-1
= ‹x,y,z›, x5 = 1, y3 = 1, z2 = 1, xy = yx, zyz = y-1

= ‹x,yz›, x5 = 1, y3 = 1, z2 = 1, xy = yx, zyz = y-1


= x ×

y, z

= gp{ x}× gp{ y, z}


= C5xD6 = C5xS3.

Finally for t = 14, we again have the relations:


(iii)

G3 =

xy, z , (xy)15  = 1, z2 = 1, zxyz=

(xy)-1


= ‹x,y,z›, x5 = 1, y3 = 1, z2 = 1, zxz = x-1, xy = yx, zyz = y-1

It is observed from the first representation that G3 is the dihedral group D15.

The defining relations show that the Sylow 3 - subgroups and Sylow 5 - subgroups are always normal in any group of order 30.

For groups of order 42 and from the factorization

42 = 7 x 3 x 2, it can be seen that the Sylow 7 - subgroup is normal in G by Theorem


(1.4.9).

Here, H =



x : x 7 = 1


K = y : y3 = 1



and

HK  KH and HK

 21.



But

HK = xy

has index 2 in G, it must be normal in G. For more than one


subgroups H we have for

z xyz = ( xy)t

where t2 ≡1 (mod 21) Hence t = 1, 8, 13 and 20.
t = 1is trivial and we look at the rest.

For t = 8, we have the following isomorphic type



(i)

G1 =

xy, z , (xy)21 = 1, z 2 = 1, zxyz= xy  1


= x, y, z , x 7 = 1, y3 = 1, z 2 = 1, xz = zx, xy = yx, zyzy= y 1

= x, z  ×  y

= D6 x C7

For t = 13 we obtain the following:


(ii) 

G 2 =

x, y, z , x 7 = y3 = z 2 = 1, zxyz= (xy)13  = x 6 y = x  1y


= ‹x,y,z›, x7 = y3 = 1 = z2 , zyz = y, xy = yx, zx = x-1

= D7 x C3.

Finally, for t = 20 we obtain the following:


(iii) G3 =

xy, z , x 7 = 1, y3 = 1, z2 = 1, zxyz= (xy)20  = x 6 y2 = x-1y-1


= ‹x,y,z›, x7 = 1, y3 = 1, z2 = 1, zxz = x-1 , zyz = y-1 From the representation of above, G3 is the dihedral D21

Next groups of order 70 were considered as follows.

Since 70 = 7 x 5 x 2, it should be seen that there exists only one class of Abelian group or order 70 which is necessarily cyclic.
By a similar approach, we see that any group of order 70 must have either its Sylow 7

- subgroup or its Sylow 5-subgroup normal in G. Hence,


H = x : x 7 = 1 and

K = y : y5 = 1


For,

zxyz= (xy )t and t2 ≡1 (mod35) we obtain t = 1, 6, 29, 34.


For t = 6 we have:


(i)

G1 =

x, y, z , (xy)35  = 1  , z2 = 1, xy = yx, zy= yz, zxz = x-1



=‹ x,z › × ‹ y ›,
= D7xC5

If t = 29, we have

x7  1, y5  1, z 2  zxz  x1, zy  yz



(ii) G 2 =

xy, z , (xy)21 = 1  , z2 = 1, xy = yx, zx = xz, zyz= y  1



= x ×

y, z


= C7xD5 = C7xS3.

If t = 34, we have:


(iii) G3 =

x, y, z , (xy)35  = 1, z2 = 1, zxz = x

1, zyz= y 1


G3 is here dihedral group of order 70, i.e. D35.

[bookmark: _TOC_250012]3.18	SUMMARY OF DEFINING RELATIONS

For groups of order 30, we have (i)	G1 = ‹ a ›, a30 = 1
(ii)	G2 = ‹ a,b ›, a15 = 1, b2 = 1, bab = a4
= ‹x,y,z›, x5 = 1, y3 = 1, z2 = 1, xy = yx, zx = xz, zyz = y-1

= x, z  ×  y

(iii)	G3 = ‹ a,b ›, a15 = 1, b2 = 1, bab = a11
= ‹ x,y,z›, x5 = 1, y3 = 1, z2 = 1, xy = yx, zx = xz, zyz = y-1

= ‹x › × ‹ y,z ›.

(iv)	G1 = ‹a,b›, a15 = 1, b2 = 1, bab = a-1



For groups of order 42, we have (i)	G1 = ‹a ›, a42 = 1.
(ii)	G2 = ‹x › × ‹ y,z ›,

x7  1, y3  1, z 2  1, xz  zx,






xy  yx, zyz  y 1


(iii)	G3 = ‹x,y,z›, x7 = 1, y3 = 1, z2 = 1, zxz = x-1, zy = yz . (iv)	G4 = ‹x,y,z›, x7 = 1, y3 = 1, z2 = 1, zxz = x-1 , zyz= y-1.

For groups of order 70, we have

(i)	G1 = ‹xy,z›, (xy)35 = 1, z2 = 1.


(ii)

G2 =

x, z ×

y , x 7 = 1, y5 = 1, z2 = 1, zxz = x

1, zy= yz, xy = yx



(iii)

G3 =  x ×

y, z , x 7 = 1, y5 = 1, z2 = 1, zxz = x

, zyz= y 1, xy = yx


(iv)	G4 = ‹xy,z›, (xy)15 = 1, z2 = 1, zxz = x-1, zyz = y-1 . The above results can be summarized as a proposition:
3.19 [bookmark: _TOC_250011]PROPOSITION

There are three non-Abelian isomorphic types of groups of order n = spq, s<p<q. (n=30, 40 and 70)
G1 = ‹a›; aspq = 1
the cyclic group which is Abelian

G2 =  x, y, z ; x  = y  = z  = 1; xy = yx, z	yz= y, z   xz = x i
q	p	s	_ 1	_ 1	t

where t1=p+1. This is the case for groups of order 30 and 70.


G3= ‹ a,b ›; apq = bs = 1, b-1ab = at2

where

t2 = pq-1


This is generally obtained for groups of order 30, 42 and 70 respectively.


G4 = ‹ x,y,z ›; xq = y p = zs = 1; xz = zx, xy = yx,

 (
3
)z 1 yz  y t3  , where  t    p  1q 1.


This was again seen to be true for groups of order 30 and 70.

With our scheme, we list the possible values of t which gave rise to non-Abelian isomorphic types of groups of order n =2pq:
For n = 154 = 2 x 7 x 11 = 2 x 77; t = 34, 43 and 76.

For n = 182 = 2 x 7 x13 = 2 x 91; t = 27, 64 and 90.

For n = 238 = 2 x 7 x 17 = 2 x 119; t = 50, 69, and 118.

For n = 442 = 2 x 13 x 17 = 2 x 221; t = 103, 118, and 220.

For n = 494 = 2 x 13 x 19 = 2x247; t = 77, 170, and 246.

For n = 266 = 2x 7 x 19 = 2 x 133; t = 20, 113, 132.

For n = 286 = 2 x 11 x 13 = 2 x 143; t = 12, 131, and 142.

For n = 374 = 2 x 11 x 17 = 2 x 187; t = 67, 120, and 1186.

For n = 418 = 2 x 11 x 19 = 2 x 209; t = 56, 153, and 208.

For n = 66 = 2 x 3 x11 = 2 x 33; t = 10, 23, and 50.

For n = 102 = 2 x 3 x 17 = 2 x 51; t = 16, 35, and 50.

For n = 114 = 2 x 3 x 19 = 2 x 57; t = 20, 37, and 56.

For n = 110 = 2 x 5 x 11 = 2 x 55; t = 21, 34, and 54.

For r =130 = 2 x 5 x 13 = 2 x 65; t = 14, 51, and 64.

For n = 170 = 2 x 5 x 17 = 2 x 85; t = 16, 69, and 84.

For n = 190 = 2 x 5 x 19 = 2 x 95; t = 39, 56, and 94.

For n = 230 = 2 x 5 x 23 = 2 x 115; t = 24, 91, and 114.


3.20 [bookmark: _TOC_250010]Lemma

Groups of order n = 2pq has at most three non-Abelian isomorphic types.
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❺⑦⑧	🖓	🗍🖯
🖞⑥⓪	❽🖟❽	🖓	🖶🗌🖭	🖓	🗑❹🕽📋🗌🗑🗅	❸🙚	🙛🙦❷🙚	⓿🙛🙚	🙘⑥③
③⑥❸⓪⑤🙙	⑤⑥⑤	🖛🙤🙚③⓪🙦⑤	⓿❺⑦🙚⑩
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	⓿🙛🙚	⑤❶④🙤🙚⓪	⑤❶④🙤🙚⓪	🖷🖶🗑	🖓	🖷❹🗍🗌🖭

	🗈
	

	⓿	🖓
	🗍🖷📋🗈	📋🗍🖭🗈	📋🖶🗑🗈	📋🖸🗍🗈	🗑🖷📋🗈	🗔🖭🖭🗈	🖵

	🖭🗌🗈
	🖶🖵🖵🗊

	🖞⑥⓪
	⓿🙛🙚	⑤❶④🙤🙚⓪	🖭🗍🖷	🖓	🖷❹🗑🗍🗈

	⓿	🖓
	📋🖶🗑🗈	🗑🖭🗔🗊

	🖞⑥⓪
	⓿🙛🙚	⑤❶④🙤🙚⓪	🖭🖵🖭	🖓	🖷❹🗍🗑🖷🗈

	⓿	🖓
	📋🖷🖵🗈	🗑📋🗔🗈	🗑🗔🗑🗍🗈	🗑🖸🖵📋🗊

	🗍🗑🖷
🗊
	⓪⑩	⑤⑥⓿	🙥⑥⑤🙙⓪❶🙚⑤⓿	⓿⑥	🗍	④⑥🙧❶③⑥	🗑

	🖞⑥⓪
	⓿🙛🙚	⑤❶④🙤🙚⓪	🗔📋🖭🗍	🖓	🖷❹🖶🗍🗑🗈

	⓿	🖓
	🖶🖵🗈	🖵🗔🖷🗈	🗍📋📋🖷🗈	🗍🖷🖷🗑🗈	📋🖵🗍🖷🗈	🗑🗍🗑🗌🗈

	🗑🖶🖷🖭🗈	🗔📋📋🖵🗊
	👈❶⓿	🗔📋📋🖵
	🖓	🖶🖵📋




🙦⑤🙧	❸🙚	🙛🙦❷🙚	⑩🙚❷🙚⑤	⑦⑥⑩⑩⓪🙤⓪③⓪⓿⓪🙚⑩🗊
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗔🗑🗍🖭	🖓	🖷❹🖶🗍🖷🗈
⓿	🖓	🖶🗍🖸🗈	🗍🖸🖵📋🗊
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗔🗔🗍🖷	🖓	🖷❹🖶🗑🗍🗈
⓿	🖓	🗔🗑🗈	🖶🗑📋🗈	🖶🖷🗔🗈	🗍🖸🗔🖭🗈	🗍🖸🖭🗔🗈	🗍🖭🗑🖶🗈
📋🗔🖸🗌🗈	🗑🖷🗔📋🗊
🖛🙙🙦⓪⑤	🗍🖸🗔🖭	🖓	🗔🗑📋🗊
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗔🗔🖸🖷	🖓	🖷❹🖶🗔🗍🗈
⓿	🖓	🗍📋🖸🗑🗈	🗑🖸🗔🖷🗊
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗔🖵🗌🗍	🖓	🖷❹🖶🗔🗑🗈
⓿	🖓	🗍🖷🖷🗈	🖸📋🗌🗈	🗍🗍🗌🖸🗈	🗍🖷🖵🗍🗈	📋🖵🖷🗑🗈	🗑🗑🖭📋🗈
🗑🖸🖵🖭🗈	🗔🗑📋🗑🗊

	🖞⑥⓪
	⓿🙛🙚	⑤❶④🙤🙚⓪
	🗔🖵📋🖭
	🖓
	🖷❹🖶🗔🖷🗈

	⓿	🖓
	🗑📋🗑🖶🗊
	
	
	


🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗔🖵🖷🗍	🖓	🖷❹🖶🖵🗑🗈
⓿	🖓	📋🖶🗍🗑🗈	🗑📋🖶🖶🗊
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗔🖶🗍🗑	🖓	🖷❹🖶🖵🖭🗈
⓿	🖓	🖶🖶🗌🗈	🗍🖭🖷🖸🗊
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗔🖶📋🖷	🖓	🖷❹🖶🖶🗍🗈
⓿	🖓	📋🖭🖶🗈	🖶🖶📋🗈	🗍🖶🗍🖸🗈	📋📋🖷🖭🗈	📋🗑🗔🖷🗈	🗑🗑🗌🖶🗈
🗑🖶🖶🖭🗈	🗔🗑🗑🗌🗊
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗔🖷🗍🗍	🖓	🖷❹🖶🖷🗑🗈
⓿	🖓	🗔🗍🖷🗈	🖶🖷🗔🗈	🖭📋🖸🗈	📋🗌📋🗌🗈	🗑🗍🗌🖭🗈	🗑🖶📋🗌🗈
🗑🖷🖸📋🗈	🗔📋🖭🗑🗊
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗔🖷🗑🖭	🖓	🖷❹🖶🖷🖷🗈
⓿	🖓	🗍🗑🖵🖵🗈	📋🗌🗑📋🗊

🗑🗊📋📋	🖢🖝🖣🖣🖛


🖟⓪⑥❶⑦⑩	⑥🙘	⑥⓪🙧🙚⓪	⑤	🖓	🗑❹🖷❹⑧🗈	❸🙛🙚⓪🙚	⑧
⓪⑩	🙦	⑦⓪⓪④🙚	🙦⑤🙧	⑧	🖘	🖷🗈	🙛🙦❷🙚	🙦⓿	④⑥⑩⓿	🙚
⓪🙙🙛⓿	⑤⑥⑤🗉	🖛🙤🙚③⓪🙦⑤	⓪⑩⑥④⑥⓪⑦🙛⓪🙥	⓿❺⑦🙚⑩
🗊	☒🙛⓪⑩	⑥🙥🙥❶⓪🙚🙧	④🙦⓪⑤③❺	❸🙛🙚⑤	⑧	⓪⑩	🙥⑥⑤🙙
⓪❶🙚⑤⓿	⓿⑥	🗍	④⑥🙧❶③⑥	🗑🗊

PROOF: This is similar to the proof of Lemma 3.21 except that t = ti, 1 ≤ i ≤ 8.

🗑🗊📋🗑	🖟☑🗴⮾🗸⮽	🗴🖞	🗴☑🖜🖝☑	🗑❹🖵❹⑧
☒🙛🙚	⑩🙚⓿	⑥🙘	🙙⓪⑥❶⑦⑩	❸⓪⓿🙛	⓿🙛🙚	🙦🙤⑥❷🙚	🙘🙦🙥
⓿⑥⓪⓪❻🙦⓿⓪⑥⑤	⑥🙘	⓿🙛🙚⓪⓪	⑥⓪🙧🙚⓪⑩	🙤🙚🙛🙦❷🙚🙧	🙧
⓪🙘🙘🙚⓪🙚⑤⓿③❺	⓪⑤
⓿🙚⓪④⑩	⑥🙘	⓿🙛🙚	⑤❶④🙤🙚⓪	⑥🙘	⓿🙛🙚⓪⓪	⑤⑥⑤🗉🖛🙤🙚
③⓪🙦⑤	⓪⑩⑥④⑥⓪⑦🙛⓪🙥	⓿❺⑦🙚⑩🗊
🖞⑥⓪	⓿🙛🙚	🙥🙦⑩🙚	❸🙛🙚⓪🙚	⑧	🖓	🗍🗍🗈	🗑🗍🗈	🗔🗍	🙦⑤🙧
🖶🗍🗈	❸🙚	⑩🙦❸	⓿🙛🙦⓿	🙙⓪⑥❶⑦⑩	⑥🙘	⑥⓪🙧🙚⓪	🗑❹🖵
🖵	🖓🗍🖶🖵🗈
🗑❹📋🗌🖵	🖓	🖶🗍🖵	🙛🙦❷🙚	⑤⑥	⑤⑥⑤🗉🙦🙤🙚③⓪🙦⑤	⓪⑩⑥④⑥
⓪⑦🙛⓪🙥	⓿❺⑦🙚🗊	👈❶⓿	🙙⓪⑥❶⑦⑩	⑥🙘	⑥⓪🙧🙚⓪	🗑❹🗍🖵
🖵	🖓	🗔🖶🖵🗈	🙛🙦❷🙚	⑤⑥⑤🗉🖛🙤🙚③⓪🙦⑤	⓪⑩⑥④⑥⓪⑦🙛⓪🙥
⓿❺⑦🙚⑩	❸⓪⓿🙛	⓿	🖓	🗑🖶	🙦⑤🙧	🖵🖶🗊	🖛③⑩⑥	🙙⓪⑥❶⑦⑩
⑥🙘	⑥⓪🙧🙚⓪
🗑❹🗑🗌🖵	🖓	🖭🗍🖵	🙛🙦❷🙚	⑤⑥⑤🗉🖛🙤🙚③⓪🙦⑤	⓿❺⑦🙚⑩	❸⓪
⓿🙛	⓿	🖓	🗍🖭🖶	🙦⑤🙧	📋🖭🗍🗊	🖡⓿	⓪⑩	⑥🙤⑩🙚⓪❷🙚🙧	⓿
🙛🙦⓿	⓪⑤
⓿🙛⑥⑩🙚	🙥🙦⑩🙚⑩	❸🙛🙚⓪🙚	⑤⑥⑤🗉🖛🙤🙚③⓪🙦⑤	⓪⑩⑥④⑥⓪⑦
🙛⓪🙥	⓿❺⑦🙚⑩	❸🙚⓪🙚	⑥🙤⓿🙦⓪⑤🙚🙧	⓿🙛🙦⓿	⑧	⓪⑩	🙥⑥
⑤🙙⓪❶🙚⑤⓿	⓿⑥	🗍	④⑥🙧❶③⑥	🗑🗊
☒🙛⓪⑩	🙦③⑩⑥	🙦⑦⑦③⓪🙥🙦🙤③🙚	⓿⑥	🙙⓪⑥❶⑦⑩	⑥🙘	⑥⓪


🙧🙚⓪⑩	🗑❹🕽🖵⑧🗅	🙦⑩	🙘⑥③③⑥❸⑩🖯
🖵⑧	🖓	🖵🗔🖵🗈	🖶🖭🖵🗈	🖭🖭🖵🗈	🗍🗍🗔🖵🗈	📋🗌🗔🖵🗈	📋
🗍🖭🖵
🖞⑥⓪	🙙⓪⑥❶⑦⑩	⑥🙘	⑥⓪🙧🙚⓪	🗑❹🖵🗔🖵	❸🙚	🙛🙦❷🙚🖯

 (
🗍
)🖟		‹ x › ×	‹	❺❻›	🖱	x 🗑	🖓	🕽❺❻🗅🖵🗔🖵	🖓	🗍
	‹ x ›	× ‹	❺❻	›	🖱	❸⓪⓿🙛	🙧🙚🙘⓪⑤⓪⑤🙙	⓪
🙚③🙦⓿⓪⑥⑤
x 🗉🗍❺❻ x	🖓	🕽❺❻🗅📋🖸🗍

 (
📋
)🖟		‹ x › × ‹ ❺❻	›	🖱	❸⓪⓿🙛
x 🗉🗍❺❻ x	🖓	🕽❺❻🗅🗔🖸🗍
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗑❹🖶🖭🖵	🖓	🗑❹🖵❹🗍🗑🖭🗈	⓿	🖓	🖭
🖶🗈	🗍🖸🗍
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗑❹🖭🖭🖵	🖓	🗑❹🖵❹🗍🖭🖭🗈	⓿	🖓	🗍
🗌🖶🗈	📋🖭🗍🗊
🖞⑥⓪	⓿🙛🙚	⑤❶④🙤🙚⓪	🗑❹🗍🗍🗔🖵	🖓	🗑❹🖵❹📋📋🖭🗈	⓿	🖓
🖷🖸🗍🗈	🖸📋🗍🗊

	🖞⑥⓪
	⓿🙛🙚	⑤❶④🙤🙚⓪
	🗑❹📋🗌🗔🖵
	🖓
	🗑❹🖵❹🗔🗌🖭🗈
	⓿
	🖓
	🖸

	🖷🗍🗈
	🗍🖭🖭🗍🗊
	
	
	
	
	
	

	🖞⑥⓪
	⓿🙛🙚	⑤❶④🙤🙚⓪
	🗑❹
	📋🗍🖭🖵
	🖓	🗑❹🖵❹🗔🗑🖭🗈
	⓿



	🖓	🗍🖷🗍🗈	🖷🗌🖶🗊
🖠🙚⓪🙚	❸🙚	⑤⑥⓿⓪🙥🙚	⓿🙛🙦⓿
	
⑧	⓪⑩	🙥⑥⑤🙙⓪❶🙚⑤⓿
	
⓿⑥

	🗍	④⑥🙧❶③⑥	🗑	🙦⑤🙧	⑤⑥⓿
🙧❶③⑥	🖵🗊
	🙥⑥⑤🙙⓪❶🙚⑤⓿	⓿⑥	🗍
	④⑥

	🗑🗊📋🗔	🖢🖝🖣🖣🖛
	
	

	🖟⓪⑥❶⑦⑩
	⑥🙘	⑥⓪🙧🙚⓪	⑤	🖓
	🗑❹🖵❹⑧	🙛🙦❷🙚	🙦⓿	④⑥⑩

	⓿	⓿❸⑥
	⑤⑥⑤🗉🖛🙤🙚③⓪🙦⑤	⓪⑩⑥④⑥⓪⑦🙛⓪🙥	⓿❺⑦🙚⑩🗊




☒🙛⓪⑩	🙛🙦⑦⑦🙚⑤⑩	❸🙛🙚⑤	⑧	🙥⑥⑤🙙⓪❶🙚⑤⓿	⓿⑥	🗍	④
⑥🙧❶③⑥	🗑	🙦⑤🙧	⑤⑥⓿	🙥⑥⑤🙙⓪❶🙚⑤⓿	⓿⑥	🗍	④⑥🙧❶③⑥
🖵	⓪⑤	🙦
⑦🙦⓪⓿⓪🙥❶③🙦⓪	🙘🙦🙥⓿⑥⓪⓪❻🙦⓿⓪⑥⑤	⑥🙘	⑤🗊
🖞⑥⓪	🙙⓪⑥❶⑦⑩	⑥🙘	⑥⓪🙧🙚⓪	🖵❹🖷❹🗍🗍	🖓	🗑🖸🖵🗈	⓿	🖓
🗍🖵🗈	🗑🖶🗈	🖶🗔	🙦⑤🙧	🖷🗍🗊	🖞⑥⓪	⑤	🖓	🖵❹🖷❹🗍🗑	🖓	🗔
🖵🖵🗈
🖵❹🖷❹🗍🖷	🖓	🖵🖭🖵🗈	🖵❹🖷❹🗍🖭	🖓🖶🖶🖵🗈	🖵❹🖷❹📋🖭	🖓🗍🗌
🗍🖵🗈	⓿🙛🙚⓪🙚	🙦⓪🙚	⑤⑥	⑤⑥⑤🗉🖛🙤🙚③⓪🙦⑤	⓪⑩⑥④⑥⓪⑦🙛
⓪🙥
⓿❺⑦🙚	🙤❶⓿	🙘⑥⓪	🖵❹🖷❹🗑🗍	🖓	🗍🗌🖸🖵🗈	⓿	🖓	🖸🗈	🖶🗔
🖓	🖸📋🗈	🖷🖸	🙦⑤🙧	🗍🖭🗌🗊	🖠🙚⑤🙥🙚	⓪⑤	⑩❶🙥🙛	🙥🙦⑩🙚
🗑🗍	⓪⑩
🙥⑥⑤🙙⓪❶🙚⑤⓿	⓿⑥	🗍	④⑥🙧❶③⑥	🖵🗊
🗑🗊📋🗔	🖢🖝🖣🖣🖛
🖟⓪⑥❶⑦⑩	⑥🙘	⑥⓪🙧🙚⓪	⑤	🖓	🖵⑦⑧	🙛🙦❷🙚	🙦⓿	④⑥⑩⓿
🙘⑥❶⓪	⑤⑥⑤🗉🖛🙤🙚③⓪🙦⑤	⓪⑩⑥④⑥⓪⑦🙛⓪🙥	⓿❺⑦🙚⑩	🙦⑤🙧
⓿🙛⓪⑩	⑥🙥🙥❶⓪⑩	❸🙛🙚⑤	🙚⓪⓿🙛🙚⓪	⑦	⑥⓪	⑧
⓪⑩	🙥⑥⑤🙙⓪❶🙚⑤⓿	⓿⑥	🗍④⑥🙧❶③⑥	🖵🗊
☒🙛⓪⑩	❸🙦⑩	🙦🙙🙦⓪⑤	⑩🙚🙚⑤	❸🙛🙚⑤	⑤	🖓	🖷❹🗍🗍❹🗍🗑
🖓	🗍🗌🗌🗍🗈	🖷❹🗍🗍❹🗍🖷	🖓	🗍🗑🗌🖭🗈	🖷❹🗍🗍❹📋🗑	🖓	🗍🖷🖷🗍🗈
🖷❹🗍🗍❹🗍🖭	🖓	🗍🗔🖶🗑🗊	🖞⑥⓪	⑤	🖓	🖷❹🗍🗍❹📋🖭	🖓	📋📋🗑🗑
❸🙚	🙛🙦❷🙚	⓪	🖓	📋🗑🗈	🗔🖵🗈	🖷🖸🗈	🗍🗍🗍🗈	🗍🖭🖭🗈	📋🗍🗌


⑩⓪🙙⑤⓪🙘❺⓪⑤🙙	⓿🙛🙦⓿	⓿🙛🙚⓪🙚	🙦⓪🙚	🖶	⑤⑥⑤🗉🙦🙤🙚③
⓪🙦⑤	⓪⑩⑥④⑥⓪⑦🙛⓪🙥	⓿❺⑦🙚⑩🗊


🗑🗊📋🖵	🖢🖝🖣🖣🖛
🖟⓪⑥❶⑦⑩	⑥🙘	⑥⓪🙧🙚⓪	⑤	🖓	🖷⑦⑧	🙛🙦❷🙚	🙦⓿	④⑥⑩⓿
⑩⓪❹	⑤⑥⑤🗉🖛🙤🙚③⓪🙦⑤	⓪⑩⑥④⑥⓪⑦🙛⓪🙥	⓿❺⑦🙚⑩	🙦⑤🙧
⓿🙛🙚⑩🙚	⑥🙥🙥❶⓪	❸🙛🙚⑤	🙚⓪⓿🙛🙚⓪	⑦	⑥⓪	⑧
⓪⑩	🙥⑥⑤🙙⓪❶🙚⑤⓿	⓿⑥	🗍	④⑥🙧❶③⑥	🖷🗊
🗸⓪⑥⑥🙘🖯	☒🙛⓪⑩	⓪⑩	⑩⓪④⓪③🙦⓪	⓿⑥	🖢🙚④④🙦	🗑🗊📋🗍
🙚❹🙥🙚⑦⓿	⓿🙛🙦⓿	⓿	🙥🙦⑤	⓿🙦②🙚	🙦⓿	④⑥⑩⓿	🙘⑥❶⓪
🙧⓪⑩⓿⓪⑤🙥⓿
❷🙦③❶🙚⑩🗊

🗑🗊📋🖶	☑🖝🖣🖛☑👇
🗍🗊	☒🙛🙚	⑤❶④🙤🙚⓪	⑥🙘	⑤⑥⑤🗉🖛🙤🙚③⓪🙦⑤	⓪⑩
⑥④⑥⓪⑦🙛⓪🙥	⓿❺⑦🙚⑩	⑥🙘	🙙⓪⑥❶⑦⑩	⑥🙘	🙦	🙙⓪❷
🙚⑤	⑥⓪🙧🙚⓪	🙘🙦🙥⓿⑥⓪⓪⑩🙦🙤③🙚
⓪⑤⓿⑥	⓿🙛🙚	⑦⓪⑥🙧❶🙥⓿	⑥🙘	⓿❸⑥	⑥⓪	⓿🙛⓪🙚🙚
⑦⓪⓪④🙚⑩	🙧🙚⑦🙚⑤🙧⑩	⑥⑤	⓿🙛🙚	🙥⑥⑤🙙⓪❶🙚⑤🙥🙚
⓪🙚③🙦⓿⓪⑥⑤⑩🙛⓪⑦	🙤🙚⓿❸🙚🙚⑤	⓿🙛🙚	⑦⓪⓪④🙚	🙘
🙦🙥⓿⑥⓪⑩🗊	🖣⑥⓪🙚	⑤⑥⑤🗉🖛🙤🙚③⓪🙦⑤	⓪⑩⑥④⑥⓪⑦🙛⓪
🙥	⓿❺⑦🙚⑩	🙦⓪🙚	⓪🙚🙥⑥⓪🙧🙚🙧	🙘⑥⓪	⑤	🖓	⑩⑦

⑧	❸⓪⓿🙛	⑧		🗍	🕽④⑥🙧	⑩🗅	🙦⑤🙧	⑧		🗍	🕽
④⑥🙧	⑦🗅🗊
📋🗊	🖟⓪⑥❶⑦⑩	⑥🙘	⑥⓪🙧🙚⓪	⑤	🖓	📋⑦⑧🗈	🗑⑦⑧🗈
🖵⑦⑧🗈	🖷⑦⑧🗈🗊🗊🗊🗊	🙧⑥	⑤⑥⓿	🙛🙦❷🙚	🙦	⑦🙦⓿⓿
🙚⓪⑤	🙦⑩	⓪⑤	⓿🙛🙚	🙥🙦⑩🙚	❸🙛🙚⑤	⑤	🖓	📋⑦🗈	🗑
⑦🗈	🖵⑦🗈🗊🗊🗊🗊🗊🗊🗊


[bookmark: _TOC_250009]CHAPTER FOUR RESULTS

Here we put up our examples and findings from the previous chapter.


4.1 RESULT 1. Groups of order 2p have only one non-Abelian Isomorphic type.


PROOF:

Let G = ‹ a › × ‹ b › such that a2 = bp = 1. Then the non-Abelian isomorphic type must have the relation
ab = bta, where 1 < t < p.
We need to show that only one value of t satisfies the above defining relationship. First, we notice that if t = 2 then
22  1 (mod 3) and we see that 22 – 1 = 3.

This is true for p = 5, 7, 11, 13,..., That is if t = 4, then
42 = 16  1 (mod 5).

Also for t = 6, 10, 12,…., for p = 7, 11, 13, …..

Hence for any prime p > 2, we show that (p – 1)2  1 (mod p)
 (p – 1)2 – 1 = kp for some integer k.

 p2 – 2p + 1 – 1 = p2 – 2p = p (p – 2) = kp Where k = p – 2 which is an integer.
Hence for any group of order 2p, there is only one non-Abelian isomorphic type with the defining relation
ab = bta


and t will take value p – 1 as the only possibility.


4.2 [bookmark: _TOC_250008]RESULT II

Groups of order 3p have at most two non-abelian isomorphic types.


PROOF:

Let G = ‹ a › × ‹ b › such that a3 = bp = 1. The non-Abelian isomorphic types must have the relations.
(i) ab = bt1

(ii) ab = bt2

where t1 and t2 are not powers of each other.

Our problem here is to determine that there are two distinct values of t in the interval 1 < t < p,
which satisfy the defining relationship ab = bta.

Here, we have

t3  1 (mod p)

 t3 – 1 = kp for some integer k, and t3 – kp -1 = 0 is a polynomial of degree 3 and would have at most three distinct roots.
By the examples of the non-Abelian isomorphic types of groups of order n = 3p, t will take values from 2, 3,…, p – 1.
From our examples above and Lemma 3.3 and 3.4, we see that only two values of t satisfied our requirement. We denote these values by t1 and t2.

4.3 [bookmark: _TOC_250007]RESULT III

Groups of order 5p have at most four non-abelian isomorphic types.

PROOF:

For G = ‹ a › × ‹ b ›, with a5 = bp = e,


the non-Abelian isomorphic types are of the form

ba = abti
where i = 1, 2, 3, 4.

As we have shown in the proof of non-Abelian isomorphic types of groups of order 3p and from examples 3.5 and 3.7, ti ‘s are within the interval 1 < t < p hence the theorem.

4.4 [bookmark: _TOC_250006]MAIN RESULT

There are more than one non-Abelian isomorphic types of groups of order n = sp, where (s,p) = 1.

4.5 [bookmark: _TOC_250005]MOTIVATION

Dihedral group is a family of symmetry groups which are not commutative. When we consider a triangular plate we can have six rotational symmetries (with r and s as rotations) which are
e, r, r2, s, rs, r2s

The above six elements form a group denoted by D3 . As an illustration sr2 = s(rr) = (sr) r = (r2s) r = r2(sr)
= r2(r2s) = r4s = r3(rs) = e(rs)= rs.
Notice that associative law was repeatedly used. The dihedral group Dn is the rotational symmetry group of the plate with n equal sides. Its elements can be described in the same manner as that used for D3. If r is a rotation of the plate through
2 about the axis of symmetry perpendicular to the plate, and s a rotation through 
n

about an axis of symmetry which lies in the plane of the plate, we have the following elements of Dn
e, r, r2, …, rn-1, s, rs, r2s, … , rn-1s.


Clearly,

rn = e, s2 = e and geometrically
sr = rn-1s and since rn-1 = r-1, it is usual to write sr = r-1s (Armstrong M.A.).

This is obtained in the situation where the order of a group n is 2p where p is a prime. This also matches the situation where t is determined for two element generators, a and b with a-1ba = bt and t2 ≡ 1 (mod p), where p is the order of b and a2 = 1.
Here we cite simple examples of groups of order 6 = 3x2, 14 = 7x2, and so on. In the situation where a group of order 15 = 3x5 is considered, there was value of t satisfying
a-1ba = bt with t3 ≡ 1 (mod 5).

For the group of order 21 = 3x7 it is easy to see that a-1ba = b2
Here we see t taking a value which is different from p-1.

This process continues but as the primes s and p become bigger, with p > s and s >2, we start noticing for as = bp =1,

and


a-1ba = bt, that t can assume several values.


Our previous examples showed that we can have more than one value of t satisfying ts ≡ 1 (mod p)
and non of such values is a power of the other. This informs that a group of order n = sp may have more than one non-Abelian type depending on the number of different values of t that can be determined.


PROOF (OF THE MAIN RESULT)

Let G be a group of order n = sp, with (s,p) = 1 and s<p. By Sylow’s Theorem there must be only one Sylow p-subgroup in G. This subgroup
K = ‹ b ›, bp = 1,

which must be normal in G.

Moreover, any other Sylow subgroup must be of the form H = ‹ a ›, as = 1.
Since K⊲ G and we have
a-1ba  K and a-1ba = bt
for some integer t.

Clearly, if t = 1, we have that G is Abelian and so ab = ba.

If p  1 (mod s) then there are s Sylow p-subgroup and we have for t ≠ 1, that

a _1bka = (a _1ba)k  = btk

That is

a-2ba2 = a-1(a-1ba) a = a-1bta =  btk

this will be repeated up to


a-jbaj = bt j

for some integer j.


If j = s then the above relation relation yields b = a-sbtas =  bts  ,
we deduce that p|(ts – 1) ⇒t s ≡1(mod p) Hence ts - 1 = kp for some integer k.
Therefore

ts = kp+1

and t = (kp + 1)1/s

From our examples, if s = 2, we have one value for t. If s = 3, we have at most two values for t.
 (
1
2
3
1
2
3
)Since t takes values in the interval 1<t<p which also satisfies the congruence ts  1 (mod p). We denote these values by t , t , t , ..., where t ≠t ≠t ≠...
and none is a prime power of the other. We have the following possibilities a_1ba = bt1  , a_1ba = bt2  , a_1ba = bt3  , ...
It is obvious that  bt1    ≠bt2    ≠bt3    ≠...

Hence by Theorems 3.6, 3.10, and examples 3.4, 3.7, 3.8, 3.12, 3.13 and 3.14 we have determined different values of t which gave rise to different non-Abelian isomorphic types.

4.6 COROLLARY

Only one value of t satisfies the congruence t2  1 (mod p) where (2,p) = 1 and p is a prime.

PROOF

Obviously p divides t2 - 1 which implies that t2 = kp +1, for some integer k. By choosing the possible values of t in the interval 1 < t < p, we need to show that only one value of r satisfies the congruence t2 1 (mod p).
From (4.1) this value is p -1. That is,

(p - 1)2 = p2 -2p + 1. Hence p divides p2 - 2p.

If on the contrary t = p - k, where k > 1 and k < p -1, then (p-k)2 = p2 - 2kp + k2 .
This is not a multiple of p.


4.7 RESULT FOR GROUPS OF ORDER n = sp SUCH THAT P IS NOT CONGRUENT TO 1 MODULO s.

The groups of order n = sp such that p is not congruent to 1 modulo s cannot have non-abelian isomorphic type.

PROOF:
For G = ‹ x,y ›, x s = yp =1, since y x ≠ x y, then y x = yt x , for some inter t > 1. So,
x -1y x = yt,
for some t in the interval 1 < t < p, will have order s or p. No such r satisfies the closure property of such groups. Hence groups of order n = sp such p is not congruent to 1 modulo s does not have a non-abelian isomorphic type. Hence such groups are necessarily cyclic.
This affirms the assertion that:
“There is just one group of order n if and only if n is a product of distinct primes p1, p2 , p3 ,..., pk such that pj does not divide (pi – 1) for 1 ≤ i ≤ k, 1 ≤ j ≤ k”
(John R. Durbin).
The above conclusion was reached after considering the isomorphic types of groups of order n for each n from 1 to 32.
Later on, we will see the extent of the truth of the above assertion when groups of order n factorizable into a product of three primes are considered.

For groups of order n = spq where s, p and q are distinct primes we have the following result:
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H = x , xq = 1, or

K =  y , yp = 1

🙦⑤🙧



H ⊲ G or K ⊲ G
🖠🙚⑤🙥🙚	🖠👇	🖓	👇🖠	🙦⑤🙧



KH  pq.
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🙚③🙚④🙚⑤⓿	⑥🙘	⑥⓪🙧🙚⓪	⑩	⓪⑤	🖟


∴G =

xy, z ,(xy)pq  = zs = 1
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z_1xyz = (xy)t
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pq(
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1< t ≤pq🗉🗍
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🙚⓪	②🗊

🖠🙚⑤🙥🙚


t s = kpq+ 1


 (
🗍
📋
)🖡🙘	⓿	🖓	⓿ 🗈	⓿ 🗈	✝🗊🗊
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 (
r
) (
i
)G	xy, z ,(xy)pq  = 1, zs = 1;

z(xy)z-1 = (xy)ti
🖞⑥⓪	🙧⓪⑩⓿⓪⑤🙥⓿	⓿⓪	🗈	⓪	🖓	🗍🗈📋🗈	🙦⓿	③🙚🙦⑩⓿	🙦⑤
🙧	⓪	🖓	🗍🗈📋🗈✝🗈🖸	🙦⓿	④⑥⑩⓿🗊	☒🙛⓪⑩	⓪⑩	⑩🙚🙚⑤	🙘⓪


⑥④	🖢🙚④④🙦
🗑🗊🗑🗑🗈	🗑🗊🗑🖵🗈	🗑🗊🗑🖷🗈	🗑🗊🗑🖸	🙦⑤🙧	🗑🗊🗑🖭	🙦⑤🙧	🙚❹🙦
④⑦③🙚⑩	⑦⓪🙚🙥🙚🙚🙧⓪⑤🙙	⓿🙛🙚④🗊

🗔🗊🖭	☑🖝🖣🖛☑👇
☒🙛🙚	🙛⓪🙙🙛🙚⑩⓿	⑤❶④🙤🙚⓪	⑥🙘	🙧⓪⑩⓿⓪⑤🙥⓿	❷🙦③❶🙚
⑩	⑥🙘	⓿	⓪⑩	❸🙛🙚⑤	⑤	🖓	🗑⑦⑧	❸🙛🙚⑤	⑦	🙦⑤🙧	⑧
🙦⓪🙚	🙥⑥⑤🙙⓪❶🙚⑤⓿	⓿⑥	🗍	④⑥🙧❶③⑥	🗑🗊	🕽🛇🙛🙚⑤
⑥⑤③❺	⑧	⓪⑩	🙥⑥⑤🙙⓪❶🙚⑤⓿	⓿⑥	🗍	④⑥🙧❶③⑥	🗑	③🙚⑩⑩
⑤❶④🙤🙚⓪	⑥🙘	⑤⑥⑤🗉🖛🙤🙚③⓪🙦⑤	⓿❺⑦🙚⑩	🙦⓪🙚	⑥🙤⓿🙦⓪
⑤🙚🙧🗅🗊	🖡⓿	⓪⑩	🙘⑥③③⑥❸🙚🙧	🙤❺	⑤	🖓	🖷⑦⑧🗈	⑤	🖓📋⑦⑧
🙦⑤🙧	⓿🙛🙚	③🙚🙦⑩⓿	⓪⑩	❸🙛🙚⑤	⑤	🖓	🖵⑦⑧🗊
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Our work here was organized in the following manner: First we looked at groups of order 2p, where p is a prime. Since every positive prime is congruent to 1 modulo 2, we did not have much difficulty in out lining the nature of the non-abelian groups of such orders. Next, we used our scheme to look at groups of order n = sp in which case we particularly looked at those prime greater 3 and are congruent to 1 modulo 3. We also tried to display their defining relation in most of the cases.
Armed with our scheme, we also sort for and obtained the number of non-abelian isomorphic types of groups of order 5p, 7p, 11p, 13p and so on. We kept the demand that p is congruent to 1 modulo 5, 7, 11, 13, in all the cases.
From the group of order 15 = 3 x 5, we sought to see what would be the fate of groups whose prime factorization were such that none of the factors if congruent to one modulo the other.
For groups of order n = spq, where s, p, and q are distinct primes, we first considered groups order 30, 42, and 70. One readily observes that such groups are of the form 2pq where each of p and q is congruent to 1 modulo 2 but may not be congruent to 1 modulo each order. We later considered when s ≠ 2. The demand here is not restricted to each of the primes being congruent to 1 modulo others.

6.1 SUMMARY OF RESULTS

The area of group classification up to isomorphism and determination of isomorphic types of groups of certain orders is as old as group theory itself.
There is no easy way out hence many tend to pursue it through different approaches. In this Thesis we devoted our work to finding the non-abelian isomorphic types of certain groups of order n = sp, spq and found the following:


1. We developed a scheme that determines the numbers that help to forms the non-Abelian isomorphic types of a group can be.
2. We gave with examples proofs of the form of the non-abelian isomorphic types of groups of order 2p, 3p, 5p, 7p,…., and 2pq, 5pq, 7pq,…


5.2 [bookmark: _TOC_250003]CONTRIBUTION TO KNOWLEDGE

(i) That the number of the non-abelian isomorphic types of groups of order n = sp increase as the values of s and p increase.
(ii) Why groups of order n = sp, where p is not congruent to 1 modulo s, cannot have a non-abelian isomorphic type.
(iii) That groups of order n = spq have non-abelian isomorphic type irrespective of whether the prime factors are congruent to 1 modulo others, that is whether s divides p -1 and q -1.
(iv) That the relationship between the prime factors of the order of groups determine to a large extent whether such groups would have non-abelian isomorphic type or not.

5.3 [bookmark: _TOC_250002]AREAS OF FURTHER RESEARCH

1. There is room to further look at groups whose orders are factorizable into more that three factors.
2. The use of those groups whose prime factors s and p such that p is not congruent to 1 modulo s.
3. The possibility of the use of isomorphic types to resolve the fundamental relationship between the underlying biochemistry and the structure of erythrocyte and other cells.
4. To determine the relationship existing between the different values of r and the


prime p in the non-Abelian isomorphic types of groups of order 3p, 5p, 7p and so on.
5. To determine the non-Abelian isomorphic types of groups of order n = 11pq, 13pq and so on where p, q > 13.

5.4 [bookmark: _TOC_250001]CONCLUSION

Based on our finding so far we showed that the number of non-abelian groups of order n = sp increase as s and p increase for p congruent to 1 modulo s in all the cases. Again, we see that for n = spq, the non-abelian isomorphic types do increase as s, p and q becomes larger due possibly to the congruent relationship among the prime factors.
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