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NOTATIONS
H G	H is a subgroup G


H  G

H is normal in G


Hg, gH	Left or right coset of H in G , g  G , H  G

 : G  H	 is a mapping from G	to H

G  H	Group G	and H are isomorphic

ker	Kernel of 

G N	Quotient group of G	by N


g 1Hg

NG H  CG H  Z G AutH  InnG Im 

Conjugate of H by g, g  G , H  G

Normalizer of H in G Centralizer of H in G Center of G
Group of automorphisms of H

Group of inner automorphisms of G

Image of homomorphism

HK	Direct product of H and K

Dn	Dihedral group of Degree n

An	Alternating group on n elements

k g	Action of g on k


Gn  

The

nth

derived group of G



V1 V2

Direct sum of Vector spaces V1

and V2



Fixm G 

Fixed-point space of G

on M

AnnM 

Annihilator of M



rad R

Jacobson radical of R



G : H

Index of H  in	G



 G	Orbit of 

under

G ,   


G	Stabilizer of  ,  


G

Pointwise stabilizer of a subset

 of 



G 

Setwise stabilizer of a subset

 of 


G 	Constituent of G on ∆

B n	Bell number Bn


Cn, r 

Cn, n1 , n2 , …nk 

Binomial Coefficient Multinomial coefficients

Cn

d n, k 



f N , r 



gN , r 



pn, r 



S n, r 

n Catalan number

Number of permutation on n -set X having

k cycles

Number of partitions of N in which each part represented fewer than r times
Number of partitions of N having no part

divisible by r

Number of r permutations of collection of n

distinct objects

Sterling number of the first kind

[bookmark:  ][bookmark:  ][bookmark:  ]s n, r  S n,0

Sterling number of the second kind Singles sterling number

dn

f n  2  f n  1  f n

Number of derangements

Recurrence of Fibonacci number

f 0  f 1  1


Ln , L1  1  L2  3

Recurrence of Lucas number

Ln2  Ln1  Ln





[bookmark:  Abstract  ]Let



Xn  1, 2,…, n

Abstract
be a finite	n -element set and let



Sn , An



and Dn



be the

Symmetric, Alternating and Dihedral groups of

X n , respectively. In this thesis we

obtained and discussed formulae for the number of even and odd permutations (of an n  element set) having exactly k fixed points in the alternating group and the generating functions for the fixed points. Further, we give two different proofs of the
number of even and odd permutations (of an n  element set) having exactly k fixed
points in the dihedral group, one geometric and the other algebraic. In the algebraic proof, we further obtain the formulae for determining the fixed points. We finally

proved the three families;

F 2r,4r  2,

F 4r  3,8r  8

and

F 4r  5,8r  12

of the

Fibonacci groups

F m , n

to be infinite by defining Morphism between Dihedral

groups	and	the	Fibonacci	groups.

CHAPTER ONE INTRODUCTION
1.1 INTRODUCTION
The main aim of this chapter is to highlight a few concepts which are fundamental for the understanding of semigroup, group and combinatorial theoretical concepts. The results therein form the background of the study, which spell out the statement of the problem, objective and justification of the
100


study.



Let X


 x , x , …, x  be a finite set, a permutation on X	is a one-to-

n	1	2	n	n

one mapping of Xn  onto itself. The set of all permutations on n elements is


denoted by Sn

called symmetric group of degree

n, and of order

n!. The group


Sn  consists of both even and odd permutations depending on the length the

permutation, even or odd. The set of all even permutations on Xn  forms a


group called the alternating group ( An ). Another subgroup of Sn

comprising of


both even and odd permutations is called the Dihedral group such that for all

x, y  Sn ,	x, y  D iff x  y  1, xy  y x .
n	2	1n


The arrangement of elements of the Alternating or Dihedral groups according to specified rule (the number of fixed points) is of particular interest. First, how many of such arrangements are possible and what is their recurrence and generating functions.
Another group which has similar structure to the dihedral group is the


Fibonacci

F (r, n)  a1a2 ⋯an1an :a1a2  a3 , a2 a3  a4 ,⋯ an1an  a1 

where r  is the

number of relations and n is the number of generators, for what value of
r & n is the group finite or infinite.

1.2 BACKGROUND OF THE STUDY


Let

Xn  1, 2, …, n be a finite n -element set and let

Pn ,

On ,

Sn , Dn and An


be the partial transformation semigroups, the submonoid of Tn consisting of all

order preserving mappings of X n , the symmetric, dihedral and alternating

groups respectively. The combinatorial properties of	Sn  have been studied

over long period and many interesting results have emerged. In particular, the


number of permutations of

X n	having exactly  k	fixed points and their


generating functions are known.


The Dihedral group

Dn , geometrically consists of all symmetries of a



regular

n  gon

(n  3),

that	is,	n	rotations	through	the	angles



360∘
x
n

(x  0,1,2,…,n  1)

and n	reflections through each of the n	lines of



symmetry of the regular n -gon. Algebraically, each element of

Dn  is either


cyclic (preserve orientation) or ant-cyclic (reverse orientation). Catarino and


Higgins (1999) introduced a new subsemigroup of

X n containing On

which is



denoted by

OPn

and its elements are called orientation preserving mappings.



Also, they introduced a Semigroup

Pn  OPn  ORn

where

ORn

denotes the


collection of all orientation reversing mappings. They showed that the


Dihedral Group is the maximal sub-Semigroup of

Pn  OPn  ORn .

Fernandes


(2000) studied the monoid of orientation preserving partial transformations of

a finite chain, concentrating in particular on partial transformations which are injective. However, the algebraic proof (along the lines of Catarino and Higgins (1999)) and the geometric proof, for the number (and properties) of even and odd permutations having exactly k fixed points in the Dihedral group
Dn seem not to have been studied.


The Fibonacci group

F 2 , n is the group defined by the Presentation


 a1a2 ,⋯, an : a1a2  a3 , a2 a3  a4 ⋯an1an  a1 , an a1  a2 

The study of these groups began in earnest after a question of Conway (1965)


as to whether or not

F 2 , 5 is cyclic of order 11, and it was quickly determined



in (Conway, et al, 1965)	that this was indeed the case, and also that

F 2 , 1



and

F 2 , 2

are trivial,

F 2 , 3

is the quaternion group of order 8 ,

F 2 , 4 is



cyclic of order 5 , and

F 2 , 6 is infinite.


In a survey article Thomas (1989) gave a list of those parameters r and


n for which the finiteness or infiniteness of the Fibonacci group

F r, n

was

still unknown. Since then, some of the unknown examples were proved infinite by Prishchepov (1998) using geometric methods, and some isolated difficult

examples, such as

F 4, 7,

were proved infinite and automatic by computer

programs written by Holt (1998), Christopher (1998), proved all of the outstanding cases except for two families of examples which were proved to be infinite by using geometric methods. The two families that remain unsettled

are

F 7  5i, 5

and

F 8  5i, 5

for integers

i  0 . The methods also apply to


those examples that had previously been handled by computers. All these

methods were not able to give a generalized result of testing the order of a Fibonacci group.
1.3 STATEMENT OF THE PROBLEM
Let
e (n, k)    An : f    k en, k     An : f    k
f  x   eixi
i!

i0
be the number of even (odd) permutations in the alternating group and the generating functions for the fixed points. How many even (odd) permutations

( e (n, k )

or e n, k 

) of an

n  element set having exactly k fixed points are in


the alternating group and what is the generating functions for the fixed points. Geometrically and Algebraically, How many even and odd permutations
(of an n  element set) having exactly k fixed points are in the dihedral group

and what are the fixed points.

To study Alternating and Dihedral groups, let	be a permutation of Xn ,


and

f m , n be the number of permutations of

Xn  that can be expressed as a



product of

ri m  i 1, i  1, 2, ⋯, m 1

cycles. How many such permutations are



there in Xn .

The Fibonacci groups



F m , n defined as



F m,

n  a1 , a2 ,…, an ai ai1 ⋯aim1  aim

i  1,2,…, m 


for what value of m and n is the Fibonacci group infinite or finite.



1.4 JUSTIFICATION OF THE STUDY
Since the combinatorial properties of



An and Dn



have not been studied, it


is our desire to consider the number of even and odd permutations (of an
n  element set) having exactly k fixed points in the alternating & dihedral groups, the generating functions for the fixed points in the alternating group and the formulae for determining the fixed points in the dihedral group. Considering the combinatorial properties of the Dihedral group, we create morphism between the dihedral group and the Fibonacci group. The morphism will give us a new method of determining the finiteness or infiniteness of Fibonacci group.
It is our hope that the combinatorial properties of these groups will help in studying the nature (structure) of other permutation groups, and it is our hope that the new method of studying the finiteness or infiniteness of Fibonacci group will help in the study of unsettled problems.
1.5 OBJECTIVE OF THE STUDY
The objective of this research is to
1. Obtain the number of even (odd) permutations having exactly k fixed points in the alternating group, discuss the fixed points and the generating functions for the fixed points.
2. Give two different proofs one geometric and the other algebraic (in line with Catarino and Higgins 1999) of the number of even and odd permutations
(of an n  element set) having exactly k fixed points in the dihedral group. In

the algebraic proof, we further obtain the formulae for determining the fixed


points.

3. Prove the three families;



F 2r,4r  2,



F 4r  3, 8r  8



and



F 4r  5,8r  12



of the Fibonacci groups

F m , n

to be infinite by defining Morphism between



Dihedral groups and the Fibonacci groups.

4. Obtain the number of permutations of



Xn  that can be expressed as a



product of

ri m  i 1, i  1, 2, ⋯, m 1

cycles.


1.6 BASIC SEMIGROUP THEORY
Throughout unless otherwise explicitly indicated, the letter S denotes an


arbitrary semigroup.
We call an algebraic structure S,∘



that satisfies the closure property a



groupoid, that is to say, if,

 x,

y  S,

x ∘ y  S .

A semigroup S is a groupoid


with an associative binary operation, that is to say, if


 x, y, z  S,

x ∘ y ∘ z  x ∘

y∘ z.



If a semigroup S has the property that, for all

x , y  S,

xy  yx , we say


that S is a commutative semigroup. If a semigroup S contains an element 1


with the property that

 x  S,

1∘ x  x  x ∘1.

We say that 1 is an identity


element of  S,  and that  S	is a semigroup with identity or a monoid. A
semigroup S has at most one identity element. If S has no identity element, then an extra element 1 can be adjoined to S to form a monoid. We define


S ∘1  S  1∘ S

and

1∘1  1 

s  S , thus

S  1 is now a monoid. We refer to

S1  S 1

as a monoid obtained from S by adjoining an identity element if


necessary.

If a semigroup S with at least two elements contains a unique element 0


(zero) such that,

 x S, 0 ∘ x  x ∘ 0  0,

we say that 0 is a zero element (or just


a zero) of S and S is a semigroup with zero. If S has no zero element, then an


extra element 0 can be adjoined to

S, we define

S ∘ 0  0  0 ∘ S

and

0 ∘ 0  0



 s  S.

We refer to

S 0  S  0 as a semigroup obtained from S by adjoining


zero if necessary. A semigroup with zero, sometimes written as S0 such that


xy  0

 x, y  S

is called a null semigroup. A semigroup with zero is called a



0 group if and only if

 a  S \0

aS  S

and

Sa S.


A non-trivial example of semigroup are the so called left (right) zero


semigroups. A non-empty set L such that

 a,b  L,

ab  a,

is called a left


zero semigroup. Similarly, we define a right zero semigroup R	such that


a, b  R,

ab  b.

Observe that for all a  in L(R) we have

a2  aa  a

such


elements are called idempotent. A semigroup consisting entirely of idempotent elements is called a band (or Idempotent semigroup).

A non-empty subset

A of

S is called a subsemigroup if it is closed with



respect to multiplication, that is, if

a, b  A, ab  A

a condition that can be



expressed more compactly as

A2  A.

The associative condition that holds


throughout S certainly holds throughout A and so A is itself a semigroup. The


sets S,

0, 1 and

e are special subsemigroups of S.



A non empty subset A of S is called a left Ideal if

SA  A,

a right ideal,


if AS  A, and two sided if it is both a left and a right ideal. Every ideal is a

subsemigroup, but the converse is not true.

1.7 MONOGENIC (CYCLIC) SEMIGROUP
The concept of a cyclic semigroup is similar to that of group theory. Let


S be a semigroup, and let U :i  I i


with

I  0

 T   U
iIi


is a subsemigroup



of S.

Let A be a non empty subset of

S, there is at least one subsemigroup of


S containing A, namely S itself. The intersection of all subsemigroups of S

containing	A,	is a subsemigroup of	S	we denote it by	A , and is a


subsemigroup defined by two properties.	(1)

A  A  j  J .

(2) If U	is a



subsemigroup of S containingj


A, then

 A U j for each j .


The subsemigroup	A	consists of all elements of	S	that can be


expressed as a finite product of elements of

A. If

A  S,

we say that A is a


set of generators or a generating set of S .


If	A	is finite, i.e.

A   a , a , a ,…, a .

Then we shall write	[image: ]A[image: ]

1	2	3	n


as [image: ]a1,

a2 ,…,an

.	In	the	case	where

A  a,

a	singleton	set,	when



 a 

 { a

, a 2 , a 3 , ⋯ }.

If S is a monoid then we can equally talk of the


subsemigroup	of	S	generated	a,	this	will	always	contain	1,

 a  {1, a , a2 , a 3 ⋯}.	we refer to [image: ]a[image: ] as a monogenic subsemigroup of S,


generated by the element a. The order of	a is the order of the subsemigroup

[image: ]a[image: ] .

If	S is a semigroup in which there exist an element a such	that

S  a , then S is said to be a monogenic semigroup. A semigroup with only

one generator is referred to as cyclic.

1.8 ORDERED SETS, SEMILATTICES AND LATTICES
A binary relation  on a set X is called a partial order relation if the relation  is an equivalence relation on X .
A	partial	order	having	the	extra-property	that	for	all	x, y  X ,


x  y

or y  x

will be called a total (or linear) order. A set with total order will


be called a totally ordered set (or chain). A set with a partial order is called a poset.
1.9 GREEN’S EQUIVALENCE: REGULAR SEMIGROUP


In 1951, J.A. Green defined five equivalences

H , K , R, D, and J .


These equivalences play a fundamental role in the semigroup theory.
Green’s Equivalences: Let a be an element of a semigroup S. The smallest left


ideal of  S	containing an element a is

Sa  a,

denoted by

S1a and is called


the principal left ideal generated by a. An equivalence	L on S is defined by


the rule that

a L b

if and only if

S1a  S1b

Similarly, we define the



equivalence R by the rule that

a R b

if and only if

aS1  bS1.


An alternative (internal) characterization is;


Let

a, b, c, d

 S. Then



(i)

a L b iff

 x, y  S1 :

x a  b,

yb  a



a R b

iff

 u, v  S1

: au  b,

bv  a



(ii)

L and R

are right and left congruence's respectively.



(iii)

L  R  H

and

L  R  D

The	smallest	equivalence	containing	both


L and R.

The equivalence	J	is defined by the rule that

a J b  S 1 a S 1  S 1 b S 1

  x, y, u, v S 1, xay  b, ubv  a.


An element

a  S

is called regular; if there exists

x in S

such that


a x a  a. Obviously, idempotents are regular. If every element of a semigroup

S is regular, we say that S is a regular semigroup.
Groups are of course regular semigroups and also every rectangular


band B is trivially regular, since

ax a  a

for all

a, x

in B


Every idempotent e in a semigroup S  is right identity for	Re (right

regular D -class) and a left identity for Le .(left regular D -class) An element


a' in S is called an inverse of a if

aa'a  a,

a'a a'  a'.


An element with an inverse is necessarily regular, if a' is an inverse of


a  then a  is an inverse of

a'.

Every regular element has an inverse, if there



exist x in S  such that

axa  a

then, let

x'  xax,

ax'a  a,

x'ax'  x'.


An element a in S may have more than one inverse. Indeed, in a rectangular band every element is an inverse of every other element.
1.10 BASIC GROUP THEORY
Throughout, unless otherwise explicitly indicated, the letter G denotes an arbitrary group.

Let G be a non empty set, the algebraic structure G,

is called a group


if;
(i) G is a semigroup with respect to 


(ii) For all

g  G

 e  G

such that

g  e  e  g  g ,

the element e  is the


identity element of G .


(iii) To every element

g in G, there exist a unique element

g 1  G

called the



inverse of

g in G

with the property that

g  g 1  g 1  g  e.


Henceforth,	unless	otherwise	explicitly	indicated,	our	groups	are multiplicative. If H is a subset of a group G such that the group operation of

G is closed on H , then H is a subgroup of G and we write

H  G,

we state



that H	is a subgroup of G  if for all

x, y  H ,

x y1  H .



If the element e is the identity element of G,

the set e

is the smallest


subgroup of G of order one. This and G itself are called the trivial (improper)
subgroups of G. Any other subgroup H of G is said to be a proper subgroup

of G .
We say that G is commutative or abelian if every pair of its elements


commutes, i.e.

 g1 , g2

in G .

g1g2  g2 g1 ,

otherwise it is non-abelian. By the


cardinality of G we mean the number of elements of the set G which we


called the order of G and is denoted by G  or

oG .



The order of an element

g  G

is the least positive integer n , if one



exists, such that

an  e,

then g is said to be of order n , if no such n exist,


then g is said to be of infinite or zero order.



Let

g  G , if the group G can be generated by an element

g  G

such



that

G  g n : n   

then  G	is said to be a cyclic group generated by g, and



written as

g  G.

If g generates G then so is

g 1  G,

and the order of g is



equal to the order of

G. Thus, if the

0G  n

and

0g  m

Then m and n are


relatively prime.
If 0G  p, p a prime number, then G	is cyclic and has no proper

subgroup.

1.11 PERMUTATION GROUP


Let X

 x , x , …, x 

be a finite set of arbitrary elements, a permutation

n	1	2	n


on X n

is a one-to-one mapping of

Xn onto itself.	The set of all permutations


on Xn forms a group with respect to permutation multiplication (composition

of mappings). The set of all permutations on n	elements is denoted by

S or SymX n	n


and called the symmetric group of degree


n , the degree of Sn is


the number of elements in the finite set permuted. The number of elements in a


permutation on n	elements is

n!  and is the order of

Sn  ( i.e. Sn  n!).  A


Permutation group G is a subgroup of a symmetric group. Elements of permutation groups are denoted by lower case letters as well as elements of

abstract groups.

The inverse	permutation



  Sn



is given by



 1  S ,n




if 	takes y



into x  and then

 1

permutation	inverse of  	takes the point x  to y ,


x 1  y . The identity permutation on X	is the identity mapping which leaves
n


all points of X n

fixed,

i : x  x

xi  x x  G .

Any element

g Sym  X n 

can be written in

r  cycle, i.e. g  x x … x ,



such	that1  2	r


x1 is mapped to

x2 ,

x2 is mapped to x3

… xr 1

and

xr is mapped to x1

and


any other element of Xn  to itself. The length of a cycle is the number of

distinct elements (points) which occur in the cycle.

Each cycle can be decomposed uniquely into disjoint cycles. A cycle which interchanges only two points and fixes the rest is called a transposition.
Every	permutation	can	be	written	as	a	product	of	transpositions,

g  x1
1


y x

y ⋯ x

y .



An element2
2
n
n


g  SymX 

is said to be even if it can be expressed as a


product of even number of transpositions and odd if it can be expressed as an


product of odd number of transpositions. A t  cycle can be expressed as a


product of

t 1

transpositions; a

t  cycle is an even permutation if it has odd


length and is odd if it has even length. A transposition is odd while the identity


element is even by convention.

The set of all even permutations on



Xn  forms a group called the



alternating group and denoted byn	n	n


A , Ax

or A

 x : A

: g  Sym  X  : g is even.



We state that

SymX : An  2

or An

 n! 2

and

An is a normal subgroup of



Sym X  . Two permutations

 and 

in Sn

are conjugate in Sn

if and only if


they have the same cycle. The cyclic form of the permutations  g 1xg	is

obtained by replacing each point	in the cyclic form of x by  g . Thus if


x  578321

g  152743

then

g 1xg  5g, 7g, 8g, 3g, 2g, 1g  248715



1.12 TRANSFORMATIONS
The analogue to the symmetric group Sn



of all permutations of a set



X n is the



full transformations semigroup Tn

consisting of all mappings from

X n into

Xn .


The operation in both cases is composition of mappings. Simple combinatorics


yields

Sn   n!
T 
 nn


1.13 GROUP HOMOMORPHISM (SEMIGROUP MORPHISM)n

Let		be a mapping from a set	M	into a set	N	denoted as


 : M  N or

 : M  M 

where m

or  m

is the image of an element


in  .	A homomorphism from a group	M	to a group  N	is a mapping


 : M  N

such that m m   m  m  for all	m , m


 M .


In that case  is

1	2	1	2	1	2

said to preserve the respective operations in M  and N . In the sense that if
operation in M and N are  and  respectively, then m  m   m  m . A
1	2	1	2

homomorphism of a group into itself is called an endomorphism.


Let

 :M  N

be a homomorphism of groups. We define the kernel of



 (written

ker)

as ker  :  m  M : m  1

and it is a normal subgroup of M .



The image of  is

im :m   : m  M  is a subgroup of

N . The

ker   1


if and only if the homomorphism		is a one to one mapping. Every


homomorphism  : M  N

gives rise to a natural factor group namely G

ker  .


It can easily be verified that if N is normal in M , then each factor group M N


gives rise to the natural homomorphism

 : M  M N

defined by

im  Nm

for



all

m  M

with

ker   N.



Let the mapping

 :M  N

be a bijective (one to one and onto)



homomorphism, then

1 : N  M

is also a homomorphism and  is said to



be an isomorphism denoted as

M  N

read as M	is isomorphic to

N . If



M  N , then the order of

M and N

is the same, and the identity

e N

is the


image of identity e  M .

We state without proof the three main isomorphism theorems.

1.13.1  The First Isomorphism Theorem


If  : M  N

is a homomorphism of groups then M

ker   im .


1.13.2  The Second Isomorphism Theorem
Let M	be a subgroup of G  and N	a normal subgroup of G. Then


NM  G,

N  M  M and  NM M   M [image: ] M  N .


1.13.3  The Third Isomorphism Theorem
Let G be a group. If N is normal in G and N  M  G , then



M N  G N

and

G N  / M N   G M

An isomorphism of a group G into itself is said to be an automorphism


of the group G . The mapping  : M  M

given by

m  m

for all

m  M , is an



automorphism

iff M

is an Abelian group.


1.14 DIRECT PRODUCTS
Let M and N be any two groups, the (external) direct product of M and


N denoted by

M  N , is the set of ordered pairs m, n,

m M

and

n  N ,

with


coordinate wise multiplication

m , n  m , n   m m , n n , m , m  M , n , n


 N .

1	1	2	2	1	2	1  2	1	2	1	2

The unit element is	1, 1,

the inverse of m, n

is m1, n1 . The new



group is known as the direct product

M  N

and it is routine to verify the


axioms of a group.


A group G is said to be decomposable if its subgroups

M and N

are


such	that	every	element	of	G	is	expressible	as	a	product	mn	with

m  M and n  N ;  every element of M  commutes with every element of N

and M  N 1. If not, it is said to be indecomposable.


The  correspondence	m, n  n, m

shows that

M  N and

N  M

are



isomorphic. Let

M and N

be normal subgroups of G such that

G  M  N ,

the



mappings

 :G  M

and

 :G  N

defined	by

 :m, n  m

and



 : m, n  n

for all m, n G

then

 and 

are surjective homomorphism



called projection of G onto M

and

onto N

respectively.



We say that

ker   1 N and ker   M 1

if it is a subgroup of G such



that

H   M

and H  N. In that case G , is said to be the sub-direct product of


M and N .

1.15 COSET


Let	H	be	a	subgroup	of	a	group	G	and

a  G.

The	subset



Ha:  ha : h  H 

is called a right coset of H in G (or residue classes modulo


the subgroup) generated by a. Left cosets of H	in G	are defined in an

analogous way.

Any two left (right) cosets of H in G are either disjoint or identical. If


a,b  G,

Ha  Hb

iff

ab1  H ,

we say that a is congruent to

b mod ulo H ,



symbolically, we write

a  bmod H  iff

ab1  H .

The relation, congruency, is an equivalence relation. Therefore, it partitions	G	into  disjoint  equivalence  classes.  The  equivalence  classes


corresponding to

a  G

is defined as, a  x  G

x  a mod H

. The number of


distinct right (left) cosets of H in G is called the index of H in G , and will be


denoted by

G : H

or [G : H ] , if G is a finite group we have

G : H  G / H .


By Lagrange’s theorem, the order of a subgroup of a finite group G

divides the order of the group, for which we can show that	G : H G
H


Equally, the order of an element of a finite group divides the order of the group.
1.16 Normal Subgroup
Let N be a subgroup of a group G. The subgroup N is normal in G,


denoted	as

N  G,

if	and	only	if

gN  Ng

for	all	g  G	or



equivalently g 1Ng  N

for

all g  G . The normalizer of H	in G	is denoted



by N H  : g  G

H g  H  g  G

Hg  gH  G . We call G	simple if its


only normal subgroups are the trivial subgroups e and G .


If  H is normal in G then the set

G H  gH

g  G is called the factor or


quotient group of G by H . The product on the set is defined by the rule


g1H

g2 H  g1 g 2H

for all g1, g2  G .



The identity element of G H

is H and

g 1H

is the inverse of

gH .



Let

g, a  G

the	element

a1ga  ga

is	known	as	the	conjugate



of g by a if

a1ga  b . Then b is said to be conjugate to

g and b

is also called



the transform of

g by a, written as

a ~ b.

The relation ~ partition G	into


equivalence classes, and conjugate elements have the same order. We write


Ca or a

for the set of all elements conjugate to

a  G

called the conjugacy


classes of a.


We defined the conjugate subgroups of G	as if

M and N

are two


subgroups of a group G. In that case, N is said to be conjugate to M if there


exist an element

x  G

such that

N  x1Mx.



If  N  x1Mx,

then  N	is called the transform of

M by x.

We write



N ~ M if

N is conjugate to

M . The relation ~ on the sets of subgroups of G is


also an equivalence relation as in elements in G.


The centralizer of


g in G


is defined by

C g :  g  G : y 1 gy  g


If the conjugacy class of g consist of just g, then g is known as a selfG



conjugate element.G


C g  g  G

x  G,

x1gx  g



There is a one-one correspondence between the conjugacy class of

g in G

and



the set of right cosets of the centralizer of G and

C l g 

G : C g



C  H  : x  GG
G
G


xh  hx

for all h  H 



: x  G

hx  h

for all

x  H   C  x

x  H 

is a subgroup of G . Indeed, C H   C x x  H  G.G
G	G


If H  G

then

CG H 

is called the centre of	G	and it is denoted as

Z G.



Z G : g  G

gx  xg

 x  G


1.17 p - GROUPS

Throughout this section, p -denotes a prime number.

Let G be a group, such that every element of G has prime power order

for some fixed prime p, then G is called a p -group.

Lagrange’s theorem assures that in a given group G, certain types of

subgroups do not exist; it however, provides a necessary condition for the existence of a subgroup. In 1875 Sylow provides a sufficient condition for the existence in a group of subgroups of certain orders. Suppose H is a proper

subgroup of G and

0 H   n, 1  n  p , then n cannot divide p . Thus a group


of prime order can have no proper subgroup, e.g. the alternating group of


degree 4,

A4 has no subgroup of order 6 although 6 divides

12.



Let G  be a finite group, such that

G  p r s

and r a natural number



where p is a prime and p, s  1.

Each subgroup of order

pr in G is called a


Sylow p -subgroup of G and if N is any p -subgroup of G then H  x1N x

for some x  G.

We state without proof the three Sylow theorems.


1.17.1  Sylow’s first theorem
Let G be a finite non-abelian group and



G  p r m



and



p, m  1.



Then



for each

n  

such that

0  n  r , G has a subgroup of order

p n .



Thus,

G  pr

for some r if and only if the order of every element of G


is a power of p.

1.17.2  Sylow’s second theorem

In a finite group the Sylow p -subgroups (for a fixed prime p ) are all conjugate and are isomorphic.
1.17.3  Sylow’s third theorem
In a finite group the number of Sylow p -subgroups (for a fixed prime

p ) is congruent to 1 modulo p.

1.18 GROUP ACTIONS ON GROUPS


Let

M and N

be groups. We say that M acts on N as a group if to each



m  M

and each

n  N ,

there corresponds a unique element

m  M

such that



(i) mn1 n2

 mn1n2 (ii) m1  m

(iii)

n n m  nmnm  m, m , m  M and n, n ,n  N

1 2	1  2	1	2	1	2


Let	M act on N as groups, then for each

m  M ,

there corresponds an



automorphism

 : N  Nm of N

and	the	mapping

 : M

 m

is	a



homomorphism	of

M int o AutoN  .	We	call		the	automorphism


representation of M or simply action.

1.19 BASIC COMBINATORICS
Combinatorics could be described as the art of arranging objects according to specified rule. We want to know, first, whether a particular arrangement is possible at all. If so, in how many ways can it be done?
Combinatorics depends on two elementary rules. (i) Disjunctive (or


Sum) rule; if

Ei i  1, 2, …, k  are k events such that no two of them can occur at



the same time, and if

Ei  can occur in ni

ways, then one of the k events can



occur in

n1  n2  …  nk

ways. (ii) Sequential or Product Rule; if an event can

occur in m ways and a second event in n ways, and if the number of ways the second event occurs does not depend upon how the first event occurs, then the two  events  can  occur  simultaneously  in  mn  ways.  More  generally,  if

Ei i  1, 2, …, k  are k events and if Ei

can occur in

n1 ways,

E2 can occur in n2



and Ek

can occur in nk

ways (no matter how the previous

k  1events occur),



then the k events can occur simultaneously in

n1 n2 n3 … nk

ways.


1.20 THE BINOMIAL THEOREM


Let n  and k  be non-negative integers, with

0  k  n.

The binomial



coefficient

 n 
  
k

is defined to be the number of k  element subsets of a set of n

  


elements. This numbers is often written asn


Ck  or

 n 
  
k

and read as n choose k.

  
It is called a binomial coefficient.


n
  
k

nn  1⋯ n  k  1
k k  1⋯1

	n!
k! n  k !	


 

n	n
where,    1 is the empty set and    1.
0	n

1.21 PERMUTATIONS AND COMBINATIONS
The number of selections of k objects from a set of n objects where


repetition is allowed and order is significant is given by

nk .

If the order is not


n  k  1
significant, it is given by 	.
	k	

If the repetitions is not allowed and order is significant it is given by

n 
nn  1… n  k  1. But if the order is not significant, it is given by  .
k 

1.22 RECURRENCE RELATIONS AND GENERATING FUNCTIONS

1.22.1  Recurrence Relation


If [image: ]a0, a1, ⋯,

ak , ⋯

is a sequence of real numbers such that there is an



equation  relating  to  the  term

an  for any n  n0 

to  one  or  more  of  its


predecessors in the sequence, then this equation is a recurrence relation obeyed


by	the	sequence.	For	example,	the	sequence

0!, 1!, 2! ,⋯

satisfies	the



recurrence relation

an  nan 1 n  1.



Conversely, given this relation and the initial condition

a0  1,

one can


recover the entire sequence by iteration.
an  nn  1an 1   nn  1n  2an 3   ⋯  nn  1⋯1  n!

The recurrence relation;


an  c1an1

 c1an1 ⋯  c1an  r 

f n



In which,

Ci i 1, 2, …, r 

are constants, with

Ci  0,

is called a linear


recurrence relation with constant coefficients of order r.


1.22.2  Generating Function
The sequence of real numbers



[image: ]ao , a1, a2 , …


and a dummy variable x ,



have ordinary generating functions as

g x  a  a x  a x2  …

and exponential


 	x

0	1	2


x2

generating function as

G x  a0  a1 1!  a2

2! ….

1.23 SOME SPECIAL NUMBERS


1.23.1  Bell Numbers

The Bell numbers



Bn is the number of partitions of an n -set or the


number of equivalence relations on an n -set (if R is an equivalence relation on

X , then the equivalence classes of R form a partition of X and the converse is

also true).
The recurrence and generating functions for Bell numbers is given by


n  1

x1


 Bn	n

Bn  

Bn k ,

for

n  1 ,	e	 

x , for n  1

k1k  1


n0 n!


1.23.2  Fibonacci numbers
In	his	book	"Liberabaci"	which	appeared	in	1202,	the	Italian mathematician Fibonacci gives this problem (the Rabbit Problem):
How many pairs of rabbit can be produced from a single pair in a year if every month each pair begets a new pair which from the second month on

becomes productive?

Let us denote by



F n


the number of pairs after n months starting from



the beginning of a year. We see that in

n  1

months there will be

F n

pairs


and as many more newly born pairs as there were at the end of the month n  1,


which is to say,

F n 1 pairs of rabbits. In other words, we have the recurrence



relation
F n  1  F n  F n  1 or Fn  1




 Fn





 Fn1



Since, by hypothesis,

F 0  1 and

F 1  2.

We find, in succession,
F 12  377.

F 2  3,

F 3  5,

F 4  8,

etc. In particular,



The numbers

F n

are called Fibonacci numbers.



Fibonacci sequence

1, 2, 3, 5, 8, … ,

is defined by the recurrence relation



fn 

Such that

f n  1  f n  2 or f 0  f 1  1

fn 


fn 1  fn  2

Thus, the ordinary generating function of Fibonacci sequence is


		
 f nxn  x f n  1xn1  x 2  f n  2xn2

n2

n2

n2


The Catalan and Bell numbers are two important sequences of numbers.

They have several, apparently accidental, common properties.

1.23.3  The Catalan Numbers


The Catalan Numbers are 1,

2, 5,

14,

42, …

and appear in many guises.


For example, in how many ways can sums of n terms be bracketed so that it can be calculated by adding two terms at a time? (Five possibilities)
The	recurrence	relations	for	the	Catalan	numbers	is	given	by


n 1

Cn 	Ci
i 1


Cn i ,

n  1.

Here Cn 1  i  n is the number of ways of bracketing a sum of n terms.

1  2n  1



The Catalan numbers Cn

is Cn  n  n  1  ,


The generating functions for Catalan numbers is given as
C(x)  C0  C1 x1  C2 x2 ⋯

1.23.4  Sterling Numbers


Let

n and k

be positive integers with

k  n,

the sterling number of the



first kind,

sn, k 

is defined by the rule that  1n  k sn, k 

is the number of

permutations of 1, 2, …, n with k -cycle.


The sterling numbers of the second kind
partitions of 1, …, n with k (non-empty) parts.

S n, k 

is the number of



The recurrence relation is given by

S n  1, k   S n, k  1  nS (n, k)

such



that

S n , 0  S n ,1  0

for

all n.


1.23.5  Proposition


n	n	n

(a)

 1n 1 S n, k   S n, k   n!; (b)	S n, k   B ,
n

nth Bell numbers.

k 1

k 1

k 1

Sn,n  Sn, k  1, Sn  1, k  nSn, k  Sn, k  1, and Sn  1, k  kSn, k  Sn, k  1

1.24 DERANGEMENTS
A derangement of 1, 2, …, n is a permutation of this set which leaves no


point fixed. Let

d n

be the number of derangements of 1 ,…, n. Any


derangement moves the point n to some point i  n (fixed no point of n ).


Thus,

d n is given as three terms recurrence relation.


d n  n  1d n  1  d n  2. d 0  1, d 1  0 .

 n  1i 

d n  n!
 i 0


i!  



This is the nearest integer to

n!  for n  1, where e  is the base of natural
e

logarithms.



CHAPTER TWO LITERATURE REVIEW
2.1 TRANSITIVE PERMUTATION GROUPS

Let G be a permutation group on  and  a subset of  ,  is said to


be a fixed block of G if

G  or

 G   .


The union and intersection of any two fixed blocks is a fixed block.


Every group G in 

has two trivial fixed blocks 

and 


2.1.1  Orbit 0f   in G


The fixed block

  

is called an orbit or set of transitivity of G on ,



denoted by  G or

G,

where G

is defined as



G :  g

g  G,

  


A group G acting on a set  is said to be a transitive permutation group


if it has only one orbit i.e. G   .Thus, for all

 ,  

there exists

g G such



that

 g   .

A group which is not transitive is called intransitive. A group G



acting transitively on a set  is said to act regularly if

 G  1

for each

 ,


that is only the identity fixes any point.	The number of elements in  G is

called the length of the orbit.


A	relation ~ in 

defined	by	the	rule,

 ~    g  

 g  G,



 ,  

with g  

is an equivalence relation.



The orbits of G partition  , for let

1 ,

 2 ,

 3 , …,  S

be the orbits of



G on 

then G induces a permutation group G 

on  and  is a disjoint



union of orbits

s
  ∪I i 1

. Moreover,


s

G  G I
i 1

and we say that G is a direct



product of the groups

G1 , G2 , … , GS . If also, each


G I

i  1, 2 ,…, s. is


isomorphic to a group H (possibly H  G ). We say that G is a sub-direct product of H .

A subset

 of 

is said to be

G  invariant if for all

g  G,

  

and



 g  s

implies

 g  


2.1.2  Some Properties of Orbits  G in G


1. Each point   

lies in exactly one orbit

 of

G,    G .



2. Two points   

lies in the same orbit  G

if and only if

   g

for


some g  G .


3. Let ,  . If

 G ,

then G  G. Otherwise

 G G  . .



4. A non-empty subset

 of 

is an orbit iff  it is a minimal

G  invariant


subset.

5. Any G invariant subset of  is a disjoint union of orbits.

2.1.3  Stabilizer of    in G


Let

g  G

and   ., the stabilizer of 

in G,

denoted as G

is defined as

G   g  G g   


The set of elements of G which fix a specified point  in ..

2.1.4  Some Properties of  G , of  in G


1. The stabilizer G of

 in G

is a subgroup of G.



2. G

 G : G

where G

is the orbit containing  ,

G : G

is the index of



G in G, and G

is transitive, then

G    n  G : G



3. Let   

and h, k  G

then  h   k

iff

hk 1  G .



4. If  h   ,   ,

h  G

then G

 G

implies that

h 1G h  G ,



5.  G

G  G ,

G  n .


2.1.5  The Transitive Constituents G 


Let G be a permutation group on ,

G  Sym.

We say that a set

  

is a


fixed block of G or is fixed by G if G   or G    .


Then each

g  G

induces a permutation on  which is denoted by

g .



We	call	the	totality	of

g `s

formed	for	all

g  G

the	constituent



G of G on

 (e.g. G  G ). clearly, G

is a permutation group on .


2.2 [bookmark: _TOC_250065]REGULAR AND SEMI-REGULAR GROUPS


A permutation group G

on 

is called semi-regular if for each

  



we have that G

 1.



Thus, a faithful

G  set

is regular if it is transitive and only the identity



of G has fixed points (that is G

 1 )


1. Every regular group is also semi-regular; subgroups and constituent of semi-regular groups are semi-regular. The identity element is semi- regular.
2. In semi-regular groups all orbits have the same length and the length is


the order of G ,

for  G G

 G . If G

1 then  G

 G (Wielandt, 1964).

3. If a Semi-regular group G of order n has m orbits then m Ga  n.

4. Caley Representation of a permutation Group  G .	Every transitive

Abelian	group is regular and G is its own centralizer.

5. The centralizer of every semi-regular group is transitive.


2.3 THE SUBGROUPS

G

and

G .


Let the group G acts on a set  and   , we define the point wise


stabilizer G of

 as


G   g  G :  g  	   

The set wise stabilizer of  is defined as
G   g  G :  g  	   


2.3.1  Some Properties of G

and

G



1. G

and

G are subgroups of G .


2. G is normal in G.


3. The factor group

G[image: ]G

is the group of permutations induced by


G on 

2.3.2  Burnside Lemma (wielandt, 1964)


Burnside found the number of orbits in the action of

G on ,

although


the work originated from Cauchy in 1845 and Frobenius in 1887.


Let the group G act on a finite set ,

the number of orbits say

n of G in


the action of G on a finite set  is given by

n  1  f t ,G


where

f t , is the number of points of G fixed by	, f t     : g    set


of fixed points of G .

Let G be a transitive permutation group on , the number of orbits


n  of

G in 

is given by



n  

1  f 2 g 
gGG




and it is called the rank of the transitive group

G on

.. If the permutation



group G is semi-regular then

n   1 n


2.4 [bookmark: _TOC_250064]PRIMITIVE GROUPSG



A subset

 of 

is said to be a set of imprimitivity (Blocks) if for each



g  G

either

g   or g

and 

are disjoint. The set 1

and the empty set 


are called the trivial sets of imprimitivity.

Let G be a transitive permutation group. If G has only non-trivial blocks then G is said to be an imprimitive group. Otherwise it is primitive on
 .

2.4.1  Some Properties of Primitive Permutation Groups


1. If

  G

then G is a trivial group.


2. Every doubly transitive group G is primitive.


3. Let

  ,

  1.

A transitive group

G on 

is primitive if and only if


G is a maximal subgroup of G.


4. If G  is primitive on 	and

    ,

then either

G  G

or G

is a


group of prime degree or equivalently G  G , G  .

5. Every transitive permutation group of prime degree is primitive.

2.5 [bookmark: _TOC_250063]MULTIPLY TRANSITIVE GROUPS

Let G  be a permutation group on 	and k  a natural number with


1  k  n 

 . We say that

G is k  ply

transitive or

k  fold

transitive on

 if



for every two	k	tuples

1 ,…,k

and

1 , …, k

of points of	



with    ,i	j



i   j

for i 

j, there exists

g  G

which takes

i int o i

i  I ,…, k .	The transitive group introduced in 2.1 is the same as 1-fold transitivity. We call a group multiply transitive if it is at least 2-transitive.

Every k  1  fold

transitive group is also

k  fold

transitive. Every group



having a

k  fold

transitive subgroup is itself

k  fold

transitive.


Whereas there are numerous nontrivial doubly and triply transitive groups, only two nontrivial quadruply transitive and two nontrivial quintuply transitive groups are known (Mathew, 1861, 1873).Their degrees are 11, 23
and 12, 24 respectively. It is not known if there are nontrivial  k  fold

transitive groups for k  7 (Dixon, 1996).

2.6 [bookmark: _TOC_250062]CLASSIFICATION OF TRANSITIVE GROUPS
The problem of classifying subgroups of the symmetric group is one of the oldest problems of group theory; it is in fact the subject of the 1858 prize question of the Academic des sciences: Academic des sciences (1857):
By the beginning of the 20th century, a series of articles had appeared which classified the transitive groups up to degree 15. The classification for the higher degree culminates in the papers of Cole (1895), miller (1896, 1898)

and Kuhn (1904). A full history of these endeavors can be found in Short (1992, Appendix A, pp. 122-124).
With the advent of computers, starting in the early 1980’s the classifications up to degree 15 were redone by Butler and McKay (1983), Royle (1987), Butter (1993).
A complete list of these groups with names and properties can be found in Conwey et al. (1998).
2.7 [bookmark: _TOC_250061]CLASSIFICATION OF PRIMITIVE GROUPS
The primitive groups up to degree 17 were already classified by Jordan (1872). Sims (1970) published a list up to degree 20 and later extended it up to degree 50. Solvable primitive groups of degree <256 were classified by Short (1992), Eick and Halfling (2003) classified all affine groups of degree up to 1000.
The O’Nan-Scoh theorem, Scoh (1980) gave the classification of finite simple groups (Gorenstein,1982) essentially reduced the problem of classifying primitive groups to the classification of maximal subgroups of simple groups and to the problem of classifying irreducible matrix groups.
Dixon and Martimer (1988) classified the non-affine primitive groups up to degree 999. This classification was made explicit by Thieben (1997), which also gives the non-soluble affine groups up to degree 255. The techniques used do not stop at this degree but should be able to classify primitive groups up to several thousands if such a classification was desired.

In particular, a classification of transitive groups only needs to classify the imprimitive groups.
2.8 CONSTRUCTING TRANSITIVE PERMUTATION GROUPS
Alexander Hulpke (1999) presented a new algorithm to classify all transitive subgroups of the symmetric group up to conjugacy. It has been used to determine the transitive groups of degree up to 30.
In his article, Hulpke described a method to construct the transitive

groups of given degree n . That is to classify the transitive subgroups of Sn up

to conjugacy. The algorithm has been used successfully to verify the lists of groups of degrees up to 15 and to construct the hitherto unclassified groups of degree 16-30. These calculations were done in computer algebra system GAP 4(GAP, 2002).
2.9 [bookmark: _TOC_250060]TRANSITIVE p  GROUPS OF DEGREE pm

Let p be a prime number. The classification of transitive p  groups of


degree

pm m  2

when the group is abelian is well-known.


We state, without proof, the result in the Lemma which follows:

2.9.1  Lemma (Audu, 1988b)


If  m

is the number of partitions of the natural number m then there



are, up to equivalence,

 m different number of faithful transitive

p  groups



of degree

pm whose centre has order

pm .


For	non-abelian	transitive	p  groups	of	degree p2 ,	we	have	the

following:

2.9.2  Theorem (Audu, 1988c)


There are 2 p  1

different

p  groups of G of order

p2 . Two of these



are Abelian of the 2 p  3

non-Abelian Group, we have that p  2

of them



have exponent p while the remaining p  1

of them have exponent p2 . As


such the groups are distinguishable by their exponent and order.

Apine, (2000) classified transitive and faithful p  groups of degree p3

whose centre is elementary abelian of rank two.

2.10 [bookmark: _TOC_250059]CLOCKWISE (ANTI-CLOCKWISE) ORIENTATION


Let

X n  1, 2

,…, n

be	a	set	with	standard	ordering.	A	map



 : Xn  Xn

is order decreasing if

x  x ,

for all x in

Xn . If

x  y  x  y ,



then	is said to be order preserving for all

x , y in

Xn . Let

A  a1, a2, …, as  be



a finite sequence from the chain

X n .

We say that A is cyclic or has clockwise



orientation if there exist not more than one subscript i such that

ai  ai 1

where



as 1 denotes

a1 . We say that

A  a1, a2 , …, as  is anti-cyclic or has anticlockwise


orientation if there exists no more than one subscript	i such that	ai  ai 1 .

Note that a sequence A is cyclic if and only if A is empty or there exist


i  0,1,…, s  1

such that

ai 1  ai 2  ⋯  as  a1  ⋯  ai ,

is unique unless the


sequence is a constant.

2.10.1 [bookmark: _TOC_250058] Remark
(i) Let	A	be any cyclic (anti-cyclic) sequence. Then	A	is anti-cyclic (cyclic) if and only if A has no more than two distinct values.

If A  a1 , a2 ,…, at  is any sequence then we denote by A


sequence

a , a	,…, a

, Called the reversed sequence of A .

t	t  1	1

(ii) Let

A  a1 , a2 ,…, at 

be any sequence from

Xn . Then A is cyclic (anti-

cyclic) if and only if A is anti-cyclic (cyclic).

(iii) If a1 , a2 ,…, at 

is a cyclic (anti-cyclic) then, so is

(a) The sequence. ai , ai ,…, a  i1  i2  ⋯  ir 
1	2	ir

(b) a , a	,… a , a  …, a	j	j 1	t	1,	j 1


for

all 1  j  t.

(iv) For non-constant if 1  n .

  OPn , 

is an order-preserving mapping if and only

2.11 [bookmark: _TOC_250057]ORIENTATION PRESERVING (REVERSING) MAPPINGS
Catarino and Higgins (1999) introduced a new subsemigroup of X n

containing On

which is denoted by

OPn

and its element are called orientation

preserving mappings. Also, they introduced a semigroup

Pn  OPn  ORn

where

ORn	denotes the collection of all orientation reversing mappings. Fernandes
(2000) studied the monoid of orientation preserving partial transformations of a finite chain, concentrating in particular on partial transformations which are injective. He study several structural properties of the monoids of all injective

orientation preserving partial transformations on a chain

POPIn .

He establishes

descriptions for the ideals and for the congruencies of these monoids and show

that

POPIn

is a 2-generated semigroup, for all

n   . He finally gives a

presentation for these monoids.
2.11.1  Orientation Preserving Mapping

Let

  Tn ,

we say that	is orientation-preserving mapping on

X n  if

the sequence

(1 , 2 , ⋯, n )

is cyclic. From 2.10 above, this sequence is then



cyclic with respect to k

for all

0  k  n  1. The collection of all orientation-


preserving mapping on X n will be denoted by OPn .

2.11.2  Lemma (Fernandes, 2000)


Let   OPn

and

(b1, ⋯, bt )

be a cyclic sequence of members of

X n .

The



sequence b , ⋯, b 

is also cyclic.

1	t


2.11.3  Remark

Catarino and Higgins (1999) regarded the members of



X n  as being


placed clockwise around the circumference of a circle so that the integer i lies


between

i  1 and

i  1 (reduced modulo n ) any sequence of 3 distinct members



(i, j, k )

is cyclic or anti-cyclic. Let   OPn and

(i, j, k)

be any triple of 3 distinct



members of

X n . If the entries are distinct, then the triple

(i , j , k )

defines

the same orientation as i, j, k .

2.11.4  Lemma (Catarino and Higgins, 4.6, 1999)


Every

  On

has fixed point.



Proof



Let



  On



and



A  x  X : x  x.



Note that



1 A and so A



is not-



empty. Let

a  max A. Hence

a  a

as	a  A,

and

a  aa  as

 On .



Thus

a  A

and

a  a

by maximality of

a , therefore

a  a

as required.


2.11.5  Lemma (Catarino and Higgins, 4.7, 1999)


Let   ak f ak

where

f  On

and

0  k  n  1.

Then

x  f ()

if and only



if x  k  F ( f ).

In particular, if

x  H , then F( )  .

2.11.6 [bookmark: _TOC_250056] Remark
Catarino and Higgins (1999) gave some results on the fixed point of OPn ,

we list some of the results as in Lemma 4.7, 4.8 & theorem 4.9 of Catarino and Higgins (1999). Let   OPn . then;
(i) The diagraph of	cannot have a non-trivial cycle and a fixed point.


(ii) Let

  OPn ,

the diagraph of	cannot have two cycles of different


length.


(iii) Let

  OPn

if F    

then the diagraph of	is a forest and each


component C associated with	is a fixed point of	is an interval.


(iv) Let

  OPn ,

such that

F     .

Let C be any component of	, then



C   C,

there exist

i, j  X

such that

c  i, j, and 

restricted to c is an



order preserving with respect to

i 1 .


2.11.7  Orientation-Reversing Mapping


Let

  Tn , we say	is an orientation-reversing mapping on

X n  if the



sequence

(1 , 2 , ⋯, n )

is anti-cyclic, the collection of all orientation-



reversing mappings on

X n is denoted by

ORn .



Let

  ORn , 

is	a	reflection	where	by

i  n  i 1i  X .



and	1 , 2 , …,n  n,n 1,…,1

for

  ORn

is anti-cyclic.


2.11.8 [bookmark: _TOC_250055] Remark


If	 , 

are	involutions	in	Tn

which	map

OPn onto

ORn

and


OR onto OP , then OR 2  OP 2  OP , P  OP  OR is a submonoid of T
n	n	n	n	n	n	n	n	n

OPn

 ORn

   OP :

X  2.


2.11.9  Lemma (Catarino and Higgins, 5.2, 1999)n



Let   OPn

be such that

X   t

for

some 3  t  n

and H 

be the class H


class containing  . Then H  2t

2.11.10  Theorem (Catarino & Higgins, 5.9, 1999)


For

t  3

the maximal subgroups of

Don are the dihedral groups of order


2t .t


2.12 [bookmark: _TOC_250054]COMBINATORIAL	PROPERTIES	OF	TRANSFORMATION SEMIGROUPS AND SYMMETRIC GROUPS

Let the binomial coefficient

 n 
 
r

be denoted as

Cn, r . Higgins (1992a)

 
presented the following results


(i) 


n

 c n, k  c m, k   c m  n, k 
k 0

for n  m



(ii)


n

 c 2k, k  c 2n  2k, n  k   4n
k 0



(iii)


n

Ck 1Cn  k k 1

 Cn



Gomes and Howie (1987) were the first to study

POn

(excluding the


identity map) and among other things they computed the order of POn as

n  n  n  r  1

POn

  r 	r	

r 0   	
However, from the computational point of view, this result is not

satisfactory if one were to compute higher orders of POn . In view of this,



Laradji and Umar (2007) computed the order of

PCn as  n ,

the double


Schroeder number, also obtain the recurrence.


f n, r, k     POn


Dom

 r  max(Im )  k



They defined

f n, r, k  in terms of In as



or    I :n


im

 r Dom  

f    k



f n,o, k   1

0

f n, r,0  1

0

k  0
k  0

r  0
r  0



and

f n, r,1    1  r  n,
r n 


f n, r, k     f n  k,
k n 


r  k,0.

 	  

n k  r  2

We have

f n, r, k    

 for n  0, k  0

r    k  1	


For a given (partial) mapping or transformation

 : y  X

 X . , we



denote the set of fixed points by

f    x  y : x  x

its Domain

Y by Dom


and its image set by Im .


Let

f n, n be the number of derangements of an

n  element set, and it is



well known that

			 			



			n



  1k

f n, n  n  1 f n  1, n  1  f n  2, n  2

 nf

n  1, n  1   1

 n!



k 0	k!n




with

f n, r   1. However,

f n, r  may also be expressed as


f n, r    Cn, r  n 

r
 

where

Cn, r  is the number of partial one to one mapping without fixed points


and	having	a	fixed	domain,	say


x1, x2 , …, xr   Xn and cn,0  1

and

cn, n 

f n, n generally we have:


2.12.1  Proposition (Laradji and Umar, 2004b)
Cn, r   rCn  1, r  1  Cn  1, r  1  r  n

r  n  m   1m

Cn, r   r! r  m 	m!

0  r  n

m 0 	
Laradji and Umar (2006) obtain the generating function an  of symmetric

inverse semigroup, such that



a  n!

 1m 


f x  a

x 2


x   e1 x .n


nn

m 0

n  m


n0,



n n!


1  x


2.12.2  Propositionm!



Let

fk x be the exponential generating function for





an,k


 n 
  k an  k


then

x 2


xke1 x
f x	k!1  x  


  

[bookmark: _TOC_250053]CHAPTER THREE RESULTS

3.1 RESULT ONE
SOME COMBINATORIAL PROPERTIES OF THE ALTERNATING


GROUP

Let



Xn  1, 2, …, n be a finite n -element set and let



Sn , In ,



and An



be as


defined, the combinatorial properties of Sn have been studied over long period

and many interesting results have emerged. In particular, the number of


permutations of  X n 

having exactly k	fixed points and their generating


functions are known.
In this section we obtain and discuss formulae for the number of even permutations (of an n -element set) having exactly k fixed points. Moreover, we obtain generating functions for these numbers. We also obtain similar results for the number of odd permutations.
We list some combinatorial results, (some may be found in chapter two and one), that we shall need later in our proofs.
3.1.1 [bookmark: _TOC_250052] Result

Let dn be as defined. Then


  1in


				n

dn  n!



i  0

 n  1
i!

dn 1  dn  2

 ndn 1   1

, where d0  1

3.1.2 [bookmark: _TOC_250051] Result
The principle of inclusion-exclusion says that

Suppose that X n is some set of objects and P is a set of properties. For


R  P ,

let

N  R

be the number of objects in

X n  that have exactly the


properties in R and non of the properties in R  P ,


N  R 

 1Q[image: ] R R Q  P

N  Q,


3.1.3  Result
Let An and n are as defined in chapter one, then,


A  n!n  2, where A
n	2	0

 1 


A1 .


3.1.4 [bookmark: _TOC_250050] Result


Let

d x, k    d n, k  xn. Then

d x, k 

converges	for


x  1

to	the

n0	n!


functions

x k e x
k!1 x .


3.1.5  Corollary


Let

d x   d n xn. Then

d x

converges for


x  1

to the function

n0  n!


· xe

1 x .

3.2 [bookmark: _TOC_250049]EVEN AND ODD PERMUTATIONS

We defined the number of k fixed points in an even permutation of n -


elements.



e (n, k )    An : f    k,



3.1

where

f    x  Xn : x  x. Then it is not difficult to see that


 n 	 n 
e n, k     e (n  k, 0)    en  k .	3.2
k	k
  	  


Thus to compute

e n, k 

it is sufficient to compute

e (n,0)  en .

However, note


that en  is the number of even permutations without fixed points; that is, the

number of even derangements. Now we have

3.2.1 [bookmark: _TOC_250048] Theorem


Let en

be as defined in (3.2). Then

eo  1, e1  0,

and for all

n  2, we



have





n!n  2  1i



	n 1 	

en 


2 i 0

  1
i!

n  1 .


Proof
By the Inclusion-Exclusion Principle we see that


n	 n 

n  2

i  n 

n 1	n

en   1i 

 An i

  1 

 An i

  1

n  (1)

i 0




n  2

	

i 	i 0



i 	n!	 n  i!  

 i 


n 1   


i 0

1 n  i!i!.	2

1	n	1




n!n  2  1i

	 n 1 	


2 i 0

  1
i!

n  1 .



The number

en satisfies some recurrence similar to those of dn

in Result 3.1.1

3.2.2 [bookmark: _TOC_250047] Proposition
Let en be as defined in (3.2) . Then



(a) e

 n 1e	 e

 1n1 n 1,

e  1,

e  0;


(b) e  ne	 1n1 n  2n 1 / 2,	e  1.n	n1
n2	0	1

n	n1	0

Proof
(a) Using theorem 3.2.1 and algebraic manipulations successively we


have

 n!n  2  1 i  


 n 1  

en
2 i0	i!
1 
n	1





  

n  1  1n  2!n  2  1i   


 n 1   

n	1 
	2


i 0


i!	

1	n	1





  

n  1n  2! n  2  1 i  n  2! n  2  1 i   


 n 1   

n	1 
	2


i 0	i!


2 i 0


i!	

1	n	1




n  1! n 3  1 i  n  1!  1 n  2  n  2! n  4  1 i 


	2
 n  1

i 0	i!

2	(n  2)!

2	i 0


i!	
   1 n 1 n  1


	n  2!  1 n  3	n  2!  1 n  2	


	2	(n  3)!	2	(n  2)!	




n  1! n 3  1 i   1 n  2     n  2! n  4  1 i 


	2
 n  1


i  0	i!

n	1
2	2	10	i!


   1 n 1 n  1


  1 n 3


	2

n  2 

 1 n  2	
2	





  

n  1!n 3  1i  n  2!n  4  1 i  

n  2   


 n 1   

n	1 
	2


i 0	i!


2	i0	i!

1		1	n	1









  

n  1! n3  1 i

  1 n2 n  2  n  2! n4  1 !   1 n3 n  3

n	1 
	2

i0	i!	1

2	i0	i!	1	

  1 n1 n  1


 n  1en 1







· en  2




   1 n 1n  1,


as required.

(b) As in (a) above, using Theorem 3.2.1 and algebraic manipulations


successively we have
 n!n  2  1 i  





 n 1  

en
2 i0	i!

1	n	1





	n  1! n 3  1 i
· 
n  1!  1 n  2   


 n 1   


n

	2	i0	i!

2	n  2! 

1	n	1





	n  1!n 3  1i  n  1

n  2   


 n 1   

n
2

	2	i 0	i!

1		1	n	1






	n  1!n 3  1i  


 n  2  

   1 n  2 

   


 n 1   

n

	2	i 0	i!

1	n	2

n	3 
2	

1	n	1




 nen 1
· 
 1 n 11 nn  3   1 n 1n  1 2






 nen 1
· 
1 n 1 1 n  2n  1, ,
2

as required.

We now turn our attention to finding the number of odd permutations


with k fixed points. Let
en, k     An : f    k,



3.3



Then it is not difficult to see that

en, k    n  en  k, 0   n  e



3.4

  	  
k	k


n  k

  	  


As in the even case above, to compute

en, k 

it is sufficient to compute



en, 0  en .

Also, note that

en is the number of odd permutations without fixed


points. That is, the number of odd derangements. We can certainly deduce


results for

en in exactly the same manner as above; however, we shall take


advantage of Theorem 3.2.1 and result 3.1.1, since it is clear that

en  dn  en




=	  1i   n!n  2  1i  n



 n 1 

 

n!2

i 0	i!


	i 0	i!

1	n	1 







n! n  2  1i
=

.
2 i0	i!

Thus we have proved the following result

3.2.3  Theorem


Let

en be as defined by 3.4. Then




e =n


n! n  2  1i
.


2 i0	i!

3.2.4 [bookmark: _TOC_250046] Proposition


Let

en be as defined in 3.4, respectively. Then



(a)

e  n  1e	 e	   1n n  1, e  e  0;

n	n1	n2	0	1
(b) e  ne	 1n n n 1 / 2, e  0.
n	n1	0

Proof
It follows directly from result 3. 1.1 and proposition 3.2.2

3.2.5 [bookmark: _TOC_250045] Proposition


Let

en and en be as defined in (3.1) and (3.3), respectively. Then




(a)

e  1 d
n	2	n


  1n n  1, d


 1;0





(b)


en

 1 d
2	n


  1n n  1, d


 1.0



Proof
(a) Using Theorem 3.2.1 and algebraic manipulations successively we


have



 n!n  2  1 i  





 n 1  

en
2 i0	i!
1 
n	1





 n! n  1 i  n!  1 n 1   1 n   


 n 1   

2 i0	i!


2  (n  1)!


n!  

1	n	1

 1 d 
2  n


1 n 1 n

2


  1 n 1
2

 1 n 1 2(n  1)
2





 1 d
2	n

 1 n 1 (n  1)





 1 d
2	n

 1 n (n  1)


as required.

(b) Using Theorem 3.2.1 and algebraic manipulations successively we


have



	n!n  2  1i

en 



2 i0	i!




 n! n  1i  n!  1 n 1   1 n 
2 i0	i!	2  (n  1)!	n!  






 1 d
2	n

 1 n 1n  1 n 1 





 1 d
2	n

 1 n (n  1)


as required.


3.2.6  Remarks

The sequence



e n, k 



and



en, k  with the exception of



en  e n, 0



are not


yet listed in Sloane’s encyclopedia of integer sequence (N.J.A Sloane, 2005).

For some selected values

e n, k 

and

e 'n, k 

see Tables 1. e n, k 

and 2. e 'n, k  ,


respectively.


	1. e n, k 
	

	k
	0
	1
	2
	3
	4
	5
	6
	7
	
e n, k 

	n
	
	
	
	
	
	
	
	
	

	0
	1
	
	
	
	
	
	
	
	1

	1
	0
	1
	
	
	
	
	
	
	1

	2
	0
	0
	1
	
	
	
	
	
	1

	3
	2
	0
	0
	1
	
	
	
	
	3

	4
	3
	8
	0
	0
	1
	
	
	
	12

	5
	24
	15
	20
	0
	0
	1
	
	
	60

	6
	130
	144
	45
	40
	0
	0
	1
	
	360

	7
	930
	910
	504
	105
	70
	0
	0
	1
	2520



2. en, k 

	k
	0
	1
	2
	3
	4
	5
	6
	
	7

	n
	
	
	
	
	
	
	
	
	e n, k 

	0
	0
	
	
	
	
	
	
	
	0

	1
	0
	0
	
	
	
	
	
	
	0

	2
	1
	0
	0
	
	
	
	
	
	1

	3
	0
	3
	0
	0
	
	
	
	
	3

	4
	6
	0
	6
	0
	0
	
	
	
	12

	5
	20
	30
	0
	10
	0
	0
	
	
	60

	6
	135
	120
	90
	0
	15
	0
	0
	
	360

	7
	924
	945
	420
	210
	0
	21
	0
	0
	2520




	3.
	e n+ e n- dn
	

	
n
	e n
	e n
	dn	e n+ e n-
	
dn

	0
	1
	0
	1
	0

	1
	0
	0
	0
	0

	2
	0
	1
	1
	0

	3
	2
	0
	2
	0

	4
	3
	6
	9
	0

	5
	24
	20
	44
	0

	6
	130
	135
	265
	0

	7
	930
	924
	1854
	0

	8
	7413
	7420
	14833
	0

	9
	66752
	66744
	133496
	0

	10
	667476
	667485
	1334961
	0

	11
	7342290
	7342289
	14684570
	0

	12
	88107415
	88107426
	176214841
	0



3.3 [bookmark: _TOC_250044]GENERATING FUNCTIONS
3.3.1 [bookmark: _TOC_250043] Proposition


Let

f x

be the exponential generating function for

en .

then using


proposition 3.2.5, result 3.1.4 and algebraic manipulations successively we see


that



   



xi   1 



 



 i  





xi

f x	ei
i 0	i!


i 0
2 
di
1 
i	1
i!






 1 

xi  1 

i  

 xi

di
2 i0	i!


2 i 0
1 
i	1
i!





 1 e x

 x 


i 1

xi 1

 1 

i xi



2 1  x

1
2 i 1



i  1!

1
2 i0	i!





 1 e x

 x e

 x  1


e x

2 1  x	2	2

 1  x2 / 2 1  x








e x


3.3.2 [bookmark: _TOC_250042] Proposition


Let

i 

fk x

be	the	exponential	generating	function	for
xk 1  x2 / 2ex

ei, k

  k  ei  k .

Then

fk x 

k!1  x	.

  

Proof

i i

 k  ei k  x

Lhs	= f

x    	
ikk	i!





e	.x i= 

	ik	 ik k!i  k !





xk	e

.xi  k

=	  i  k	



k! i  k

i  k !




= xk	   xk 1  x2 / 2e x 

k! f x	k!1  x

rhs,


as required.

3.3.3 [bookmark: _TOC_250041] Proposition


Let

i	i 

gk x



be	the	exponential	generating	function	for
xk x2 / 2ex

e i, k     ei  k .
k

Then

gk x 

k!1  x	.

  


Proof



From	the	obvious	fact	that



d i, k  e i, k   ei, k , result	3.1.4	and


proposition 3.3.2 it follows that




xke x

  	 xi



	 

	 xi



k!1  x

d
i  k

i, k
i!


i  r

e i, r

e i, r
i!



  	 xi  

	 xi


i  k

e i, k
i!

e
i  k

i, k
i!





xk 1  x2 / 2e x	



k!1  x	gk


x.


hence the result follows.
3.4 [bookmark: _TOC_250040]NUMBER	OF	PERMUTATIONS	WITH	A	GIVEN	CYCLE STRUCTURE


Let

Xmn  a1, a2 ,…, amn ,

where m  2 and

n  1, then we immediately see that


3.4.1 [bookmark: _TOC_250039] Lemma


Let

Xn  a1 , a2 , …, an . The number of ways in which a permutation	of

X 4  a1 , a2 , a3 , a4  can be expressed as a product of two transpositions is 3.


Proof



  a1 a2 a3 a4 ,



a1 a3 a2 a4  and a1 a4 a2 a3 



3.4.2 [bookmark: _TOC_250038] Lemma

The number of ways in which a permutation	of



X 6 can be expressed



as a product of three transpositions is 15 Let the first transposition be a1 x



then



x  a2 , a3 , a4 , a5 , a6 ,



and the other

4 elements can be written as two transpositions in 3 ways. Then we have 15 possible ways.

3.4.3  Lemma
The number of ways in which permutations  of





X 2n



can be expressed


as a product of n transpositions is

f (n, 2)  	2n!	 

2n! .

2n  2 n  2⋯ 4  2	2n  n!

Proof




a1 x,

The proof is by induction. If the first transposition is
x  a2 , a3 ,…, a2n  then there are 2n  1 possibilities for x . The remaining


2n  2	elements	can	be	expressed	as	a	product	of	transpositions	in


2n  32n  5⋯3 1ways. Then we have	2n  1.2n  32n  5⋯3 1

possible


ways.


3.4.4  Lemma

The number of permutation	of



Xmr that can be expressed as a product



of r m -cycles is

f (r, m)  mr !.
mr r !



3.4.5 [bookmark: _TOC_250037] Theorem

Let	be a permutation of



Xn , with



ri m  i  1  cylcles i  1, 2, ⋯, m  1.


the number of such permutations is


n! mr1 r !m  1r2 r


! ⋯ 2rm 1 r


 m2
!

n!
 r  	 


1	2	m1

m
i 0

i i 1

ri 1 !



Proof



First	note	that



mr1  m  1r2  ⋯  3rm  2  2rm 1  n .	Now	choose



mr1


 n	

elements from

X n to form r1

m  cycles. This can be done in 	
mr

ways, and

	1 


these

mr1 elements can be expressed as a product of r1

m  cycles in

f r1, m.

Next choose m  1r2

elements from the remaining

n  mr1

elements to


 n  mr1 

form the

r2 m  1 cycles . This can be done in

m  1r 

ways and these



m  1r2



elements can be expressed as a product of

2 

r2 m 1 cycles , in



f r2, m  1

ways. We continue in this way until we reach the last


2 rm 1



elements which can be expressed as a product of


rm 1
2 
 cycles in

f rm 1, 2


ways. Multiplying all the possibilities gives


 n	

 n  mr1 

 2rm1 

 mr  f r1, m. m  1r  f r2 , m  1 ⋯  2r

 f rm 1, 2.

	1 

	2 

	m 1 

This simplifies to the required result by using Lemma 3.4.4 and algebraic manipulations.
3.5 RESULT 2
SOME	COMBINATORIAL	PROPERTIES	OF	THE	DIHEDRAL GROUP


Dn ,

We investigate certain combinatorial properties of the Dihedral group we give two different proofs of the main result; one geometric and the

other algebraic. We now consider the geometric approach.


First, recall that the dihedral group Dn

consists of all symmetries of a



regular

n  gon

(n  3),

that	is,	n	rotations	through	the	angles



360∘
x
n

(x  0,1,2,…,n  1)

and n	reflections through each of the n	lines of

symmetry of the regular n -gon.



We shall denote the set of rotations and reflections by

Rotn

and Re fn ,


respectively.

Next we establish a sequence of results that will lead to the proof of the main result.

3.5.1  Results

Rotn is a cyclic subgroup of



Dn, in fact



Rotn = <	>, where


 12⋯n



is the first rotation through angle

3600
n

,	in a clock-wise direction (same


direction as the labeling of the corners of the regular n  gon).


3.5.2 [bookmark: _TOC_250036] Result
If n is odd,



Rotn  An . .



Proof



If n  is odd,



  12⋯n



is a cycle of odd length and	and all its


powers are even permutations.


3.5.3 [bookmark: _TOC_250035] Result

For all	in



Rotn ,


f 



 0, except the identity e  for which



f e



 n.



3.5.4 [bookmark: _TOC_250034] Result

If n is even, there are exactly



n	even permutations and exactly	n
2	2


odd permutations in Rotn .


Proof



If n is even, then



  12⋯n



is a cycle of even length and so



, 3 , 5 ,⋯,n1

are all odd permutations, while

 2 , 4 ,⋯,n

are all even



permutations.

To obtain the corresponding results for



Re fn ,



we observe that if n is


even then there are two types of lines of symmetry (of the regular n -gon): one through the midpoints of a pair of opposite sides and the other through a pair

of opposite vertices. The former gives rise to

n derangements while the latter
2



gives rise to

n	permutations each having exactly two fixed points.
2

And if n is odd, all lines of symmetry are through a vertex and the midpoint of its opposite side. This gives rise to n permutation each having exactly one fixed point. Thus we have:

3.5.5 [bookmark: _TOC_250033] Result

If n is even, there are exactly



n	derangements and
2



n	permutations
2


each having exactly two fixed points, in Re fn.


3.5.6 [bookmark: _TOC_250032] Result

If n is odd,



f    1 for all	in



Re fn .


3.5.7 [bookmark: _TOC_250031] Result


If n  4k,

there are exactly

n even derangements and exactly
2

n  odd
2


permutations each having exactly two fixed points in Re fn .

Proof
For	the	even	derangements	we	consider	reflections	through	the midpoints



of a pair of opposite sides, which give rise to

4k  2k 2

transpositions (an even


number of transpositions).

For the odd permutation each with two fixed points, we consider reflections through the other type of line of symmetry, which give rise to
4k  2  2k 1 transpositions (an odd number of transpositions).
2

3.5.8 [bookmark: _TOC_250030] Result


If	n  4k  2,

there are exactly

n	odd derangements and exactly	n
2	2


even permutations each having two fixed points in Re fn .

Proof
This is similar to that of Result 3.5.7, above. Two further results whose proofs are similar to that for Result 3.5.7 above are.
3.5.9 [bookmark: _TOC_250029] Result

If	n  4k 1,	then there are n even permutations each having a unique

fixed point in Re fn .

3.5.10 [bookmark: _TOC_250028] Result

If	n  4k  3,	then there are n odd permutations each having a unique

fixed point in Re fn .


3.6 [bookmark: _TOC_250027]NUMBER OF FIXED POINTS

Now as in the Alternating group, we define equivalence on Dn



by the


equality of number of fixed points and consider:

f (n, k)    Dn	f ( )  k .	(3.5)



Then it is clear that

f (n, n)  1

since the identity permutation is the only one


with n fixed points.

3.6.1 [bookmark: _TOC_250026] Proposition


Let

f (n, k)

be as defined in (3.5).


Then we have



a


b

n 1,
f (n, 0)   3n

1,
 2

f (n, 1)  n,	if

0,	if

if n is odd ,
if  n is even.

n is odd ,
n is even.



c

0,
f (n, 2)   n

 2 ,

if n is odd ,
if n is even.



d  f (n,

3) 

f (n, 4)  ⋯ f (n, n  1)  0.



Proof



(a) If n is odd, there are



n  1



derangements from



Rotn , by Result 3.5.3


and there are no derangements from Re fn , by Result 3.5.6.


If n is even, there are again

n  1

derangement from

Rotn

by Result 3.5.3



and there are

n derangements from
2

Re fn

, by Results 3.5.3. The proofs for (b)

and (c) are similar to that for (a) above.

(d) This result follows directly from (a), (b) and (c) together with the


fact that

f n, n  1



3.7 [bookmark: _TOC_250025]EVEN AND ODD PERMUTATIONS
Let e (n, k )    Dn  An : f ( )  k



(3.6)



Then clearly we see that

e (n, n)  1.

Less obvious is the following result.


3.7.1 [bookmark: _TOC_250024] Proposition


Let

e (n, k) be as defined in

(3.6).


Then we have


n  1,
a e (n, 0)   n  1, 2


n  1,

b e (n, 1)  n,

0,

 n ,c e (n, 2)   2


0,

if n is odd ,
if n  4k  2,
othewise.

if n  4k  1,
othewise.


if n  4k  2,
othewise.

d  e (n,2)  e (n,4)  ⋯  e (n, n  1)  0.


Proof


a



If n is odd, then there are



n  1



even derangements, by Results



3.5.2 and 3.5.3, all from

Rotn .

Note that there are no derangements from

Re fn


by Result 3.5.6.


If	n  4k  2,

then there are

n  1
2

even derangements from

Rotn ,	by

Result 3.5.3 and Result 3.5.4. There are no even derangements if n  4k  2


from

Re fn

by Result 3.5.8.



Finally, if

n  4k ,

then there are

n  1
2

even derangements from

Rotn , by



Results 3.5.3 and 3.5.4. Moreover there are

n even derangements from
2

Re fn ,

by Results 3.5.7.

The proof for (b) and (c) are similar to that for (a) above, while (d) follows directly from proposition 3.6.1 (d).
We now turn our attention to odd permutations.


First, let
e(n, k)    Dn




 An



f    k	3.7.



Then it is clear that

f (n, k )  e (n, k )  e(n, k ).



3.8.



and since

e (n, n )  1 

f (n, n)


It follows that e(n, n)  0. In general, we have

3.7.2 [bookmark: _TOC_250023] Proposition


Let

e(n, k) be defined as in 3.7 .


Then we have



0,
a  e(n ,0)  n,

 n


if n is odd ,
if n  4k  2,

[image: ] ,	otherwise.
 2


b e(n ,1)  n,

if n  4k  3,


0,

otherwise.



 n ,c e(n ,2)   2



if n  4k,

0,

otherwise.

d  e(n, 3)  e(n, 4)  ⋯ e(n, n  1)  0.


Proof



All the results follow directly from proposition 3.6.1 and equations 3.7


and (3.8).
3.8 [bookmark: _TOC_250022]THE	SUBGROUP	OF	ORIENTATION	PRESERVING (REVERSING) MAPPINGS

Let

X n denote the set 1, 2,⋯, n

considered with standard ordering and



let

Tn ,

Pn	and	On

be	the	full	transformation	semigroup,	the	partial


transformation semigroup and the submonoid of Tn  consisting of all order

preserving mappings of X n , respectively. Another closely related algebraic


structure to On

and Pn

are Sn

and Dn

the symmetric and dihedral groups on the


set X n , respectively.

Catarino and Higgins (1999) introduced a new subsemigroup of X n containing


On which is denoted by

OPn

and its elements are called orientation preserving



mappings. Also, they introduced a semigroup

Pn  OPn  ORn

where

ORn


denotes the collection of all orientation reversing mappings. Fernandes (2000) studied the monoid of orientation preserving partial transformations of a finite chain, concentrating in particular on partial transformations which are injective. Here, we consider the subgroup of orientation preserving bijective
mappings. In particular, we pay attention to a subgroup the Dihedral group Dn


of the order 2n


defined as

Dn  x, y


xn  1, y2  1

xy  x1y.

We have in sections 3.5-3.7 give a geometric proof for the number of even and odd permutations having exactly k fixed points in the Dihedral group Dn . However, the algebraic proof of this result along the lines of Catarino and Higgins (1999) seem not to have been studied.
At the end of this introductory section we gather some known results


that we shall need in later sections.

The semigroup of all order-preserving self maps of



Xn  consist of all



maps

 : Xn  Xn

with the property that

x  y  x  y . A map	is order



decreasing if

x  x

for all x in

Xn . Let

A  a1, a2 , …, as 

be a finite sequence


from the chain Xn . We say that A  is cyclic or has clockwise orientation if


there exist not more than one subscript i such that

ai  ai 1

where

as 1

denotes



a1 . We say that

A  a1, a2 , …, as 

is anti-cyclic or has anticlockwise orientation


if there exists no more than one subscript i such that ai  ai 1 . Note that a


sequence A is cyclic if and only if A is empty or there exist

i  0,1,…, s  1



such that

ai 1  ai  2  ⋯  as  a1  ⋯  ai .

i is unique unless the sequence is a


constant.

3.8.1 [bookmark: _TOC_250021] Result
Let	A	be any cyclic (anti-cyclic) sequence. Then	A	is anti-cyclic (cyclic) if and only if A has no more than two distinct values.


If	A  a , a ,…, a 

is any sequence then we denote by	A

sequence

1	2	t


a , a	,…, a

, called the reversed sequence of A .

t	t  1	1

3.8.2 [bookmark: _TOC_250020] Result

Let

A  a1, a2 ,…, at 

be any sequence from

Xn . Then A is cyclic (anti-

cyclic) if and only if A is anti-cyclic (cyclic).

3.8.3 [bookmark: _TOC_250019] Result
If a1, a2 …, at 

is cyclic (anti-cyclic) then so is

(a) the sequence. ai , ai ,…, a  i1  i2  ⋯  ir 
1	2	ir

(b) and the sequence a , a	,…a , a, …, a

, for all 1  j  t.

j	j 1	t	1	j 1

3.8.4  Result
For non-constant




  OPn , 



is an order-preserving mapping if and only


if 1  n.


3.8.5  Result
Any restriction of a member of



OPDn



(ORDn )



is also a member of



OPDn


(ORDn )

3.8.6  Result


Let

 OPDn and let a1 … am , m  1

be any cyclic sequence of members



of	Xn ,	then	the	sequence	a1 …am 

is	also	cyclic.	Similarly

a1  … m  is cyclic.

3.8.7  Result [11, lemma 4.8]

Let   OPDn .Then the digraph of	cannot have a non-trivial cycle and a fixed point.

3.8.8  Result [11, lemma 4.9]


Let

  OPDn . Then the digraph of	cannot have two cycles of


different length.


3.8.9  Result

The maximum subgroup of Dn



is OPDn



and is cyclic of order n;



OPDn is



a cyclic subgroup and every subgroup of

OPDn

is also cyclic of order less than


or equal to n .


3.8.10 [bookmark: _TOC_250018] Result

If n is a natural number; then




OPDn



is a subgroup of	Dn



and



ORDn is


an inverse of OPDn .

3.9. SUBGROUP OF ORIENTATION PRESERVING MAPPINGS
We shall give the algebraic proof of the results established in section

3.5. We first consider the subgroup OPDn .


3.9.1 [bookmark: _TOC_250017] Lemma
The set of all   OPDn



forms a cyclic subgroup of



Dn .


Proof
Every subgroup of a cyclic group of order less than or equal to the order


of the group is a cyclic subgroup. Let

  OPDn ,

by Result 3.8.5 and Result



3.8.6	the	sequence	a 1



a2

⋯ a m 

is	cyclic	and	if

  OPDn

then

a1 a2 ⋯ am  is also cyclic.


3.9.2 [bookmark: _TOC_250016] Lemma
Every   OPD n



is either a derangement or an identity.



Proof



It is clear from Results 3.8.7 and 3.8.8 that every



  OPD n



cannot have


a non trivial cycle and a fixed point and the digraph of	cannot have two cycles of different length and lemma 3.9.1 implies the result.

3.9.3 [bookmark: _TOC_250015] Lemma
If n	is odd, the set of all



  OPD n



forms a cyclic subgroup of



An of


order n .


Proof



Since every,



  e OPDn



is a derangement, and	is of odd length.


Then every permutation of odd length is even and a product of even or odd


number of even permutations is even. Hence

OPDn

is a set of even permutation



and Lemma 3.9.1 andn


A   S

 is

even implies the result.



3.9.4 [bookmark: _TOC_250014] Theoremn


If n  is even, there are exactly



n even permutations and exactly
2



n odd
2



permutations in

OPDn .


Proof


Every  m  OPD

1  m  n

is defined as,

n	n

m	i  n  m	 i, m  i   i i  m	i  2m ⋯
n
n

i1



Let

Tk	be the length of one of the cycles of

m  and

am be the number of


disjoint cycles in  m . If n	is even we first consider even values of m ,n
n


m  n  2k and then carry out the induction process of the proof.

First consider m  n  2k , we have,

Case I. m  n  2k


n 1 1 n

1 2n

1 3n ⋯ 1 n  n  1 ,


implies that  n has n fixed points.

Case II. m  n  2


n2  1

n 1

n  3

n  5 ⋯ n  n  3  32

n n  2

n  4⋯n  n  4  4



⋯ k k  (n  2)

k  2(n  2)

k  3(n  2) ⋯

n  n  k   2)  k  2


To determine the nature of the permutation  n2 , we only need to
determine the length of one of the cycles in the product of disjoint cycles of

 n  2 .


Now, let
T1  1



n 1



n  3



n  5 ⋯ n  n  3


be one of the cycles of  n2 .

T 			1
n 
n  3
 1
2
n
n



Since by Result 3.8.8, any

 m  OPD

cannot have two cycles of



different length in  n2 , we can only haven
2
n


n

cycles each of length

n , which
2



is a product of even number of odd (even) length cycles. Hence

 n  2

is a

product of even number of even (odd) length cycles.

Case III. m  n  4


 n4  1 n  3 n  7

n 11⋯ n  n  5⋯ 4 n

n  4 ⋯ n  n  8

Then, the length of one of the cycles, says

T1  1

n  3 ⋯

n  n  5 of



the permutation


 n  4

is n .
4



By a similar argument as in case 1, we have

 n  4

 4,

Thus for any



value of n  the permutation

 n  4

is a product of four (even) numbers of even



(odd) length cycles. Hence  n4

is an even permutation for

n even (odd).
4



Case IV. We now consider a general case for

m  n  mk


mk  2, 4, …, n  2


 n  mk


mk

 i
i 1

n  mk  i

n  2mk  i

n  3mk

 i ⋯ mk

 i

Lets denotes one of the cycles of  nmk  by T ,
K


TK 

1 n  mk 1

n  2mk  1

n  3mk

 1⋯ mk

 1


such that the length of T  is  T   n .
k	km

k


By  similar  argument  as  in  cases  I-III,  for

n	even  (odd),  the
mk



permutation

nmk is a product of m

(an even number) of even (odd) length



cycles.k


It is clear that for n



 2k there are



n even numbers and
2



n odd numbers.
2



We conclude from case I-IV, that if

n  2k (even)and

m  2k , then there are n
2

even permutations.



We now pay attention to the remaining

n  permutations. By a similar
2



argument as in the case of

m  2k

we consider,

m  n  m , m

is an odd number,



m  1,

3,…, n  1 such that for any cycle, say,


T of  nm


we have T

 n .
m



Since n is even and m

is odd we consider two cases:



Case I. m

does not divides n .



Then nm

is a cyclic permutation of length n ,

n  even.



Case II. m

divides n



Let

n  m d .Since n is even and m

is odd, then it is clear that d is an


even number. nm  is a product of m	cycles each of length d , is a product of
odd number of even length cycle.

Finally, we conclude that if n is even, then for any value of m satisfying


case I & II  m

is an odd permutation, and there are	n
2

m `s

in n	.


3.10 SUBGROUP OF ORIENTATION REVERSING MAPPINGS
We can now give the algebraic proof of the results established in section

3.5. We consider ORDn .


Throughout	sections	3.10	and	3.11,

m, n and k  ,

(set	off	natural



numbers)


n  m  k ,


0  k 

m 1
2	,

and	0  m  n  2.	If


m  2k  1

then



0  k  m  1
2

and

0  m  n  2.

Let

  ORDn

, we say	is an orientation-



reversing bijective mapping on

X n ,

if the sequence

(1, 2, ⋯,

n)

is anti-

cyclic, the collection of all orientation-reversing bijective mappings on X n  is


denoted by ORDn .

We	define	a	reflection



m  ORDn



by	i 1 i  m 1 i  Xn 



with



   : i  n 1 i
0

such that 1 , 2,  ⋯,

n   n,

n  1,

⋯, 1

and is anti-



cyclic. Thus, for every

 m  OPD

there exist an equivalence

m 

in ORDn , .


that is there exist an isomorphism between the subgroup OPDn and ORDnn


3.10.1 [bookmark: _TOC_250013] Lemma

If n  2k 1, we consider two cases of 	 mm



(i) If


m  2k ,

	has a fixed point at

n  1	m
i 	 [image: ]


m	2	2


(ii) If

m  2k 1,

then

	0  m  n  1 has a fixed point at i  n  m 1


m	2
Proof
We prove the assertions by induction on m, there are several cases to be

examine. First recall that for all

m  ORDn ,

	 mm




n1


= i, n  m  i  12

i 1



Case 1.

m  0

( m  0 mod n )



n12

  0  i, n  i  1
i 1

1	
2	
⁝	
n  1	
2
n  1	
2
⁝	
n  1	
n	

n
n  1
⁝
n  3


2
n  1


2
⁝
2
1




The fixed point is at

  i  1 n  0 1  i  1 n  m 1, m  0
	
0	2	2



  1

n2 n 1 ⋯  n 1

n  3  n 1

n 1

0	  2	2

  2	2  

		
Similarly, we consider the next even natural number, m  2


   1

n  22

n  3 ⋯

 n  1

n  1 n  1

n  3  ⋯

n  1 n

2		2


	
2 	2	2	

2 has a fixed point at

i  1 n  2  1  i  1 n  m  1 , m  2
2	2
Case 11, We now assume that the result holds for all values of m up to 2k .



2k

 i n  i  2k  1.



	 1 n  2k 2 n  2k  1 ⋯  n  2k  1

n  2k  3  n  2k  1  n  2k  1 

2 k	
	2

	
2		2	2	



 n  1⋯



n  22k  1 1   n  1
 

n  22k  1 1 


⋯ n

n  2k  1

	2	2

 	2	2	

	has a fixed point at
2 k



2k  i  1 n  2k  1  i  1 n  m  1,

m  2k .

2	2


Case 111, finally, we consider the next even natural number after

2k ,



m  2( k 1).


2  k 1




i



n  i  2k  1



	 1

n  2k 12

 n  2 k 1 1
n	2 k	1	1 ⋯     


n  2 k 1 1 

2k 1

	2	2	

	



 n  2 k 1 1 n  2 k 1  3 

 n 1 n  2 2 k 1  3  n 1

n  2 2 k 1 1 

	2	2

 ⋯   2	2

  2	2	

				

The fixed point is at

i  1 n  2 k  1  1  i  1 n  m  1, m  2 k  1

2	2
The result is true for m  2 k  1, hence it is true for all


m  even and


n  odd.


(ii).By a similar argument as in (i) above. Here, we consider m , n  2k 1.



	 mm


n1

2

= i, n  m  i 1.
i1



Case 1.

m 1.

n  odd .



n1
2

1  i n  i 
i 1


	1
	
	n  1

	2
	
	n  2

	⁝
	
	⁝

	n  1
	
	1

	n
	
	n




The fixed point is at

i  1 n  1  1 2




 i  1 n  m  1, m  1 2




for




n  m


Since n and m are odd natural numbers and 0  m  n 1 n -odd (the operation is


orientation) we have

i  n ( n  n, we have 2n  n).
2



		

 n  1

n  1 n  3

n  3

		

1  1 n  1 2

n  2 ⋯
  2


2   2

 ⋯ n 1 1 n  n
2  



Similarly, for

n  odd , we consider the next odd natural number,

m  3



  1 n  323


 n  3
n  4 ⋯


n  7




 ⋯ n  1


n  1n

n  2

  2	2	


The fixed point is at
i  1 n  3  1 , m  3 and




n  odd

2	2


by	a	similar	argument	as	in	the	case	of

m 1,
1 
n  n
2

we	have



i  n  3  1 
2

i  n  m  1 ,
2

m  3, n  odd .



Case 11, we assume that the result holds true for all values of

m  2k 1,

n  odd .





m(2k 1)

n1

2

  2k 1  i,
i1


n  i  2k 




	 1

n  2k  12

n  2k  1  1 ⋯  n  2k  1  1

n  (2k  1)  3  ⋯

m(2k 1)		2
2

	


 n  2k  1  1	n  2k  1  3  n  2k  1  1	n  2k  1  1  ⋯



	2	2		2	2	



n  1

n  2k  1  2n

n  2k  1  1




Similarly,	for

m  2k 1

the	fixed	point	is	at



i  n  2k  1  1  i  n  m  1 , m  2k  1


n  m,


n  odd .

2	2


Case III.

n  odd

and

m  2k  3,

the next odd natural number after

2k 1.





m(2k 3)

n2


  2k 3   i,2

i1


n  i  2k  2






2 k 3	

	

		

 n  2k  3  1

n  2k  3  3

m  

  1 n 

2k  3
2 
n 

2k  3

 1 ⋯	
	2	2	




n 

2k  3  1



2k  3  3
n 	n 

2k  3  1



2k  3  1
n 	 ⋯

	2	2		2	2	



n  1

n  2k  3  2n

n  2k  3  1


by a similar argument as in cases I-II the fixed point is at

i  n  2k  3  1  i  n  m  1 ,


m  2k  3,


n  m, n  odd .

2	2
The induction process proves that the result holds true for any value of

m  2k 1.

3.10.2 [bookmark: _TOC_250012] Lemma

If n is even, then we have two cases for m


(i) If

m  2k , m

has no fixed point.



(ii) If

m  2k 1, m has two fixed points at

i  1 n  m  1 2

and

i  n 

m  1 .
2

Proof
(i) For n -even we prove the assertion in a similar way we prove Lemma


3.10.1 , by considering

m  2k

and n - even.



Case I. Consider

m  0

and 2 .




n

   0  i,
i 1

n  i  1





1	
2	
⁝	
n  2	
2
n	
2
n  2	2
⁝


2
⁝
n  1

2
n

1



n
n  1
⁝
n  4


2
n  2


2
n

If i is a fixed point, then

  i  n 1
0	2


If i  n  1
2

is a fixed point, then it is clear that

n  1

is odd, since n is even, it



implies that

i  n 1
2

does not exist in 	(set of natural numbers) or	. Hence



or otherwise, if

i  n 1
2

is a fixed point, then,

0  i  n  1



		

 n  2

n  4   n	

  0  1 n 2

n  1 ⋯
	2

 
2	  2

n  1




If m  2 ,2


   2  i,

n  i  1



If i is a fixed point, then

i  n  1 , does not exist in   (set of natural numbers)
2



or	. since, by similar argument as in

m  0, n

is an even natural number;

n 1



is odd

n 1   . If we assume that
2

n  1  n  1 2

as in the other case, an odd


number, that is i  n 1 is a fixed point, it implies that

i  n  n  1  1  n  n  1


Hence

2 doesn't have a fixed point.



		

 n  4

n  2  n  2	n 		

2  1

n  2 2

n  3 ⋯ 
	2


2		2

 ⋯ n
2 

n  1


Case II. Assume that the result is true for m  2k ,



2k

 i,

n  i  2k  1



If i  1 n  2k  1
2

is a fixed point, then it is clear that

n  2k  1

n  (2k  1)

is odd, since

n is even and

2k  1 is odd. It implies that
2

does not exist in   (set

of	natural	numbers)	or	.	Hence	or	otherwise,	if	we	assume	that

i  n  2k  1  n  2k  1, 2

is a fixed point, then
2k  i  n  n  2k  1  2k  1  n  n  2k  1


	 1,

n  2k 2

n  2k 1 ⋯  n  2k	n  2k  2  ⋯

2k		2	2	
	


n 1  n  2k  2n	n  2k 1




Case III.

m  2(k 1),

the next even natural number after

2k ,



2k 1	 	  i,

m(2k 1)

n  i  2k 1




m(2k 1)  1

n  2 k 12

n  2 k 1 1 ⋯



 n  2(k 1)	n  2(k 1)  2 

⋯ n 1

n  2 k 1  2n	n  2(k 1) 1

	2	2	
	


n  2(k  1)  1
i 	2

 i 

n  m  1
2	,

m  2(k  1)

does not exist as a fixed point in

m , by a similar argument as in the cases I&II

above

n  m 1

is odd, which implies that

n  m  1 2

does not exist in

 or   2(k  1) Hence or otherwise, if

n  m  1
i 	2

 n  m  1

then

2k 1  i  n  n  m 1  2k 1  n  n  m 1

implies that n  2(k 1)  1 is not a fixed point.

The induction process proves that the result is true for any value of

m  2k , n -even.


(ii) If	n even and

m  2k  1

then we consider various cases of m in a similar


way as in (i) above.

Case 1. m 1.


n

2

  1  i,1

i 0


n  i





1	
2	
⁝	
n  2	
2
n	2
⁝


2
⁝
n  1

1
n

n	is the sec ond fixed po int



n  1
n  2
⁝
n  2


2
n











is the first fixed po int











  1

n  12

n  2 ⋯

 n  2

n  2  n

n  ⋯ n n

1		2


 [image: ]  [image: ]
2	 2  2 



i  n
2

is the first fixed point of

1 when n is even and

m  2k 1.

If one point is



fixed, then we have

n 1

elements left. Since

m  2k 1 ,

then by a similar


argument as in Lemma 3.10.1 for n and m - odd. We have second fixed point at



n  1  1 i  n  m  1,

m  1.

2	2
Similarly, if m  3,


n


3  i,2

i 1


n  i  2



   3  1

n  32

n  4 ⋯  n  2

n  2  n n  4 

⋯ n 1

n 1n	n  2

3		2	2

 2	2	


i  1 n  3  1 2

		

is a fixed point.
By a similar argument as in the case I above, the other fixed point is at



i  n 

3  1


2


 n  1  i  n 

m  1
2	,


m  3.


Case II. m  2k 1.

Let’s assume that the result is true for all values of m up to m  2k 1.


n

2

2k 1  i,
i 1


n  i  2k 



	 1

n  2k  12

n  2k  1  1 ⋯

 n  (2k  1)  1


n  (2k  1)  3 


2 k  1




 n  (2k  1)  1




n  (2k  1)  1




⋯  n 


2

2k  1  1


2	

(2k  1)  3 

n	

	2	2			2	2	


	(2k  1)  1n




n  (2k  1)  1⋯n  1

n  2k  1  2n

n  2k  1  1

	2	2	



n  (2k  1)  1
i 	2

 i  n 
2

m  1
2	,

m  2k  1

is a fixed point.
By similar argument as in the cases I&II above




i  n 

m  1


2

is the second fixed point.


Case III.

m  2k  3, the next odd natural number after

2k 1



		

 n  (2k  3)  1

n  (2k  3) 

2 k 3  1

n  (2k  3) 2

n  (2k  3)  1 ⋯	
	2	2	




 n  (2k  3)  1

n  (2k  3)  1	

(2k  3)  1

(2k  3)  3

	 ⋯ n 	n 	
	2	2			2	2	



	(2k  3)  1

(2k  3)  1

		

n 
	2

n 	2

 ⋯ n 1


n  2k  1 n

n  2k  2

The first point is at

n  (2k  3)  1
i 	2

 i  n 
2

m  1
2	,

m  2k  3.

By a similar argument as in the above cases 1 & 11, the second fixed point is at

i  n 

(2k  3)  1
2

 i  n 

m  1
2	,

m  2k  3.

The induction process shows that if n is even and

m  2k 1 the permutation m


has two fixed points at

i  1 n  m  1 and
2




m  1
n 	2



3.10.3 [bookmark: _TOC_250011] Lemma

If n is even and



m  odd for every




  ORDn



there are exactly n
2



derangements and

ORDn .

n  permutations each having exactly two fixed points in
2



Proof



If n even is ( n  4k or 4k  2), it is clear that there are



n even numbers
2



of ms ’ in

n , and

n odd numbers of
2

ms

in n . If

m  2k  1 there are

n odd
2

ms ’



in n.

It implies that there are

n permutations with two fixed points in n by
2



Lemma 3.10.2 Similarly, by the same argument

m  2k

and Lemma 3.10.2



there are

n derangements in n . 2



3.10.4 [bookmark: _TOC_250010] Result
If n is odd,



f m   1



for all m ,



m  ORDn .


Proof
This result follows from Lemma 3.10.1

3.10.5  Result


Let

n  4k  2, if

m  2k

then there are exactly

n odd derangements and
2



if m  2k 1

then there are exactly

n even permutations each having exactly
2



two fixed points, for every

m  ORDn .



Proof

If




n  4k  2 ,



there  are  exactly



n	derangements  and  exactly	n
2	2



permutation with two fixed points by Lemma 3.10.3 since

 ORDn

cannot


have two cycles of different length from Result 3.8.8.



Now, if

m  2k,

m  is a derangement by Lemma 3.10.2 and can be



written as a product of

(4k  2)  0  2k 1 2

transpositions, a product of an odd


number of transpositions, odd permutations.


If m  2k 1 then each

m ORDn

has two fixed points as given by Lemma



3.10.2 and can be written as a product of

4k  2  2  2k
2

transpositions, a

product of even number of transpositions, an even permutation.

3.10.6 [bookmark: _TOC_250009] Result


Let

n  4k , if

m  2k

then, there are exactly

n even derangements, and if
2



m  2k 1

there are exactly

n odd permutations each having two fixed points,
2


for every m ORDn .

Proof
By a similar argument as in the proof of Result 3.10.5 above, if n  4k


and

m  2k ,

for every

m ORDn

can be written as a product of 4k  0  2k , an
2

even number of transpositions, an even permutation. (Lemma 3.10.2)


If n  4k ,

and

m  2k  1 each m

has two fixed points, and can be written


as a product of (4k  2)  0  2k 1 transpositions, an odd permutation.
2

3.10.7 [bookmark: _TOC_250008] Result


If n  4k 1,

then there are

n  even permutations each having a unique


fixed point in ORDn .

3.10.8 [bookmark: _TOC_250007] Result


If n  4k  3,

then there are

n  odd permutations each having a unique


fixed point in ORDn .

The proof of the above two results is similar to that of Results 3.10.5 and 3.10 6 above.

3.10 [bookmark: _TOC_250006] 9 Remark
Let f n, k 


and


f  n,n 


be as defined above. We give the algebraic proof


of proposition 3.6.1.


Proof



If n is odd there are



n 1 derangements from OPDn



by Lemma 3.9.2 We



observe that inn


ORDn

there are no derangement if n is odd, by Lemma 3.10.4



If n is even there are

n 1

derangements from

OPDn by Lemma 3.9.2 and 2

derangements from Lemma 3.10.3.

The proofs for (b) and (c) are similar to that for (a) above.

3.11 [bookmark: _TOC_250005]EVEN AND ODD PERMUTATIONS

3.11.1 [bookmark: _TOC_250004] Proposition


Let

e  n, k 

and

en, n 

be as defined in equation (3.7), we give the


algebraic proof of proposition 3.7.1.


Proof



If n is odd, then all	 OPDn



by Lemma 3.9.3 are even derangements



except the identity element. There is no derangement in

ORDn

for n -odd by


Lemmas 3.10.1 and 3.10.4.



If n  4k  2,

then there are

n  1
2

even derangements from

OPDn  by



Lemmas 3.9.2 & 3.9.4. In ORDn , we consider two cases of

m, m  2k  1

and


m  2k. In both cases, there is no even derangement from Results 3.10.5.

If n  4k, there are n  1 even derangement from Theorem 3.9.4 in OPD .

2

Note that in ORDn  we consider two cases of



m . If



m  2k ,

n


then there are n
2

even derangements from Result 3.10.6. There is no even derangement for

m  2k  1.

The proof for (b) and (c) are similar to that for (a) above, while (d) follows directly from proposition 3.6.1(d).
3.11.2 [bookmark: _TOC_250003] Proposition


Let

f n, n,

f n , k ,

e n , n, e n , k  ,

e n , n

and

en , k 

be as defined in


section 3.7, the algebraic proof of proposition 3.7.2 follows directly from the algebraic	proof	of	proposition	3.6.1	given	above.


	4.
	e n, k
	
	

	k
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	
e n, k 

	n
	
	
	
	
	
	
	
	
	
	
	

	0
	1
	
	
	
	
	
	
	
	
	
	1

	1
	0
	1
	
	
	
	
	
	
	
	
	1

	2
	0
	0
	1
	
	
	
	
	
	
	
	1

	3
	2
	0
	0
	1
	
	
	
	
	
	
	3

	4
	3
	0
	0
	0
	1
	
	
	
	
	
	4

	5
	4
	5
	0
	0
	0
	1
	
	
	
	
	10

	6
	2
	0
	3
	0
	0
	0
	1
	
	
	
	6

	7
	6
	0
	0
	0
	0
	0
	0
	1
	
	
	7

	8
	7
	0
	0
	0
	0
	0
	0
	0
	1
	
	8

	9
	8
	9
	0
	0
	0
	0
	0
	0
	0
	1
	18



5. en, k 

	k
	0
	1
	2
	3
	4
	5
	6
	
	7
	8
	9
	

	n
	
	
	
	
	
	
	
	
	
	
	
	e n, k 

	0
	0
	
	
	
	
	
	
	
	
	
	
	0

	1
	0
	0
	
	
	
	
	
	
	
	
	
	0

	2
	0
	0
	0
	
	
	
	
	
	
	
	
	0

	3
	0
	3
	0
	0
	
	
	
	
	
	
	
	3

	4
	2
	0
	2
	0
	0
	
	
	
	
	
	
	4

	5
	0
	0
	0
	0
	0
	0
	
	
	
	
	
	0

	6
	6
	0
	0
	0
	0
	0
	0
	
	
	
	
	6

	7
	0
	7
	0
	0
	0
	0
	0
	0
	
	
	
	7

	8
	4
	0
	4
	0
	0
	0
	0
	0
	
	0
	
	8

	9
	0
	0
	0
	0
	0
	0
	0
	0
	
	0
	0
	0



3.12 [bookmark: _TOC_250002]DIHEDRAL GROUPS AS HOMOMORPHIC IMAGES


We	proved	the	three	families:

F 2r,4r  2,

F 4r  3,8r  8

and



F 4r  5,8r  12

of the Fibonacci groups

F m , n

to be infinite by defining


morphism between dihedral groups and the Fibonacci groups.

The dihedral group denoted by Dn is usually defined as


Dn  x, y

xn  y2  1, yx1  xy  .


It is easy to prove the following:

3.12.1 [bookmark: _TOC_250001] Lemma


For all

k  0,1, 2,…, n 1

we have;



a


x k  xnk ;

d  xk y2  1;



b
c

y 1  y;

yxk  xnk y;

e
 f 

xk yxk  y;

yxy  x 1  xn1.



Thus we may write the elements of	Dn

uniquely as	xk

or	xk y ,

for


k  0,1,2,…, n 1 .


F m,

n  a1 , a2 ,…, an ai ai1 ⋯aim1  aim

i  1,2,…, m 


where subscripts are taken modulo n if necessary. The following lemma seems to be useful:
3.12.2 [bookmark: _TOC_250000] Lemma


For all

k  0

and

m  2

a	 a 1 a 2

mk

k 1

mk 1


Proof


amk  ak ak 1 ⋯ amk 1

 a1 a	a a	⋯ a	ak 1
k 1
k  k 1
mk 2
mk 1



 a1 a2
k 1 mk 1


3.13 THE FIBONACCI GROUP

F 2r, 4r  2



Consider the Fibonacci group
F 2r, 4r  2  a1, a2 ,…, a4r2 aiai1⋯ai2r  ai2r1



i  1, 2,…, 4r  2 



where subscripts are taken modulo

4r  2

if necessary. The following lemma

seems to be useful:

3.13.1  Lemma


For all

k  0

and

r  2,

a	 a 1 a 2

2r k

k 1

2r k 1


Proof

a2r k  ak ak 1 ⋯a2r k 1


 a 1 ak 1



k 1ak


ak 1


⋯a2r k 2

a2r k 1



 a 1 a 2
k 1  2r k 1


3.13.2  Proposition

There	exist	a	morphism	from

F 2r,4r  2 is infinite.



F 2r,4r  2 onto Dn n  3. Hence


We shall prove this result by a sequence of lemmas and observations

which we record as equations. First, we define a mapping from the first 2r


generators of

F 2r,4r  2 onto the two generators of

Dn by



a1  x

and

ai  y

i  2,…,2r 

(3.9).


Then we immediately see that for r  1


a2r 1

 a1 a2

⋯a2r

 xy 2r1  xy

(3.10) .


and using lemma 3.13.1, we deduce that

a	 a 1a 2


 x1 xy2  x 1  xn1

3.11.

2r 2	1	2r 1


a	 a 1a 2

 y 1 xn1 2  yxn2  x2 y

3.12

2r 3	2	2r 2

More generally, we have

3.13.3  Lemma


For

4  i  2r 1, r  2 .

a2 r  i  y


Proof
The proof is by induction.

Basis step: By Lemma 3.13.1 and (3.12), we see that


a	 a 1a 2

 y 1x 2 y2  y 1  y.

2r 4	3	2r 3


Induction step: suppose that


a2r  k  y

k  4,5,…,2r .


Then using Lemma 3.13.1 again, we see that

a	 a 1a 2	 y 1 y 2  y 1  y.
2r  k 1	k	2r k

as required.

3.13.4  Lemma


For
a a4r 2 

r  1 we have;

xy;



b a4r 3  x;

c a4r i  y




( 4  i  2r  2).


Proof
We shall henceforth use Lemma 3.13.1, equations (3.9) to (3.12) whenever necessary without mentioning.

a a


4r 2

1
2r 1 a


2
4r 1a


(xy)1 y 2  xy.

b a


 a1  a2

(xn1)1(xy)2  x

4r 3	2r 2  4r 2

(c) This is by induction.


Basis step:

a4r 4





1
2r 3 a






2
4r 3a




(x 2 y)1 x 2  x2 yx2  y.



by (b).



Induction step: suppose that

a4r k  y

k  i  4, 5,…, 2r 1.


Then


a4r  k 1

1
2r k a


2
4r ka


 y 1 y 2  y,


as required.

It is now clear from Lemma 3.13.3, Lemma 3.13.4 and equations (3.10)
to	(3.12)	that	the	map: 	defined	from	the	first	2r	generators	of


F 2r,4r  2 onto the two generators of Dn

by a1  x

and

ai  y

i  2,…,2r  as



in (3.9) is indeed a morphism onto

3.14 THE FIBONACCI GROUP

Dn .

F 4r  3,



8r  8



Consider the Fibonacci group
F 4r  3, 8r  8  a1 , a2 ,…, a8r 8 ai ai1 ⋯ai4r 2  ai4r 3



i  1,2,…,8r  8  ,


where subscripts are taken modulo 8r  8 if necessary.


As in the case of the Fibonacci group

F 2r, 4r  2

we state the



corresponding lemmas in

F 4r  3,

8r  8.


3.14.1  Lemma


For all

k  5

and

r  0 .


a. a	 a1 a2	;
4r k	k 4  4r k 1

b. a	 a1	a2	;
6r k	2r k 4  6r k 1

c. a	 a1	a2	.
8r k	4r k 4  8r k 1


Proof





a a4r k  ak 3 ak 2 ⋯ a4r k 2 a4r k 1



1 a

k 4

(ak 4

ak 3

⋯ a4r k 2

)a4r k 1


 a 1 a 2	.
k 4  4r k 1

.	b a6r k  a2r k 3 a2r k 2 ⋯ a6r k 1


1 a

2r k 4

(a2r k 4

a2r k 3

⋯ a6r k 2

)a6r k 1



1 a

2r k 4

2
6r k 1a
.




c

a8r k  a4r k 3a4r k 2 ⋯ a8r k 2a8r k 1



1 a

4r k 4

(a4r k 4

a4r k 3

⋯ a8r k 2

)a8r k 1



1 a

4r k 4

2
8r k 1a
.




3.14.2  Proposition
There	exist	a	morphism	from



F 4r  3, 8r  8



onto	Dn



 for all n  3. Hence

F 4r  3, 8r  8

is infinite.



We carry out the proof in a similar way to that for

F 2r, 4r  2. We



consider the case of

r  0

first, then

r 1.



We define a mapping from the first 3 generators of

F 3, 8

onto the two


generators of Dn by


a1 , a3  x

and

a2  y

3.13



Then we immediately see that

a4  a1 a2 a3  xyx  y



(3.14) .

We shall henceforth use lemma 3.14.1 and equations 3.13 and 3.14

whenever necessary without mentioning.

3.14.3  Lemma


If
a. a5 , a7

c. a6 , a8

k  5 then

 xn1;


 x2 y.


Proof


(a) a

 a1 a2

k	k 4  k 1


a  a 1a 2  xn1 y 2  xn1.
5	1	4

The proof of a7 follows from the same argument


b a

 a1 a2

k	k 4  k 1

a  a 1a 2  y 1 xn1 2  x2 y .
6	2	5

The proof of a8 follows from the same argument

3.14.4  Lemma
If k  5 we have;

a a9 , a11  x;

b a12 , a10  y.


Proof



a a





 a1 a2

k	k 4  k 1

a  a1a2 (xn1)1 x2 y 2  x.9	5	8


The proof of a11 follows from the same argument

b a


 a1 a2

k	k 4  k 1

a	 a 1a 2  x 2 y1 x 2  y
10	6	9


The proof of

a12 follows from the same argument.



It is now clear from lemmas 3.14.3 and 3.14.4 and equations 3.13

and



3.14

that the map:  defined from the first 3 generators of

F 3, 8

onto the



three generators of Dn

is indeed morphism onto

Dn .



We define a mapping from the first 4r  3

generators of

F 4r  3, 8r  8


onto the two generators of Dn by


a1 , a2r 3  x

and

ai  y

i  2, 3,…, 2r  2, 2r  4,…, 4r  3.	(3.15)


Then we immediately see that


a	 a a ⋯a

 xy2r1xy2r  y

(3.16) .

4r 4	1  2	4r 3

We shall henceforth use lemma 3.14.1 and equations 3.15


to 3.16


whenever necessary without mentioning. to prove Lemmas 3.14.5 and 3.14.6.

3.14.5  Lemma
For r  1 ,


a
b

n1
4r 5a	 x	;



a	 x2 y;4r 6




c

a4r i  y

7  i  2r  6.



Proof


a





1	2 a	a
a

4r k	k 4  4r k 1



a	 a1a2

 x1  y 2  xn1 .

4r 5	1	4r 9

b


1	2 a	a
a
.

4r k	k 4  4r k 1



a	 a 1a 24r 6
2


 y1 xn1 2  x2 y.


(c) We carry out the proof by induction.4r 5



Basis step: By Lemma 3.14.1, 3.15 and b

above


a	 a1a2	 y1 x2 y 2  y.

4r 7	3	4r 6


Induction step: suppose that




a4r k  y


i  k  7,8,…, 2r  5.


Then using Lemma 3.14.1 again, we see that


a4r k 1

1	2
k 3  4r k a	a


 y1 y2  y,


as required.

3.14.6  Lemma


a a6r 7


b a6r 8


 xn1 ;


 x2 y ;



c a6r i   y

(9  i  2r  8) .



Proof



a. a





 a1	a2

6r k	2r k 4  6r k 1


a

b.


6r 7


a

1
2r 3 a



 a1

2
6r 6a



a2

 x1  y 2  xn1.

6r k	2r k 4  6r k 1



a6r 8


1
2r 4 a



2
6r 7a


 y1 xn1 2  x2 y.


(c). The assertion may be proved by induction on i  k .


Basis step: for

k  i  9

we see that


a	 a1	a2
6r k	2r k 4  6r k 1


a6r 9


1
2r 5 a



2
6r 8a


 y 1 x 2 y2  y.



Induction step: suppose that

a6r k  y

9  k  2r  7


Then using Lemma 3.14.1 again, we see that


a6r k 1

1
2r 3k a


2
6r ka




since

k  9

it	is	clear	that	2r  3 k  2r  3

and	any	number	say



am  a2r 3  y from 3.15 also,


a6 r k  y

from the induction step, hence



a6r k 1

1
2r 3k a


2
6r ka


 y1 y2  y


as required.

3.14.7  Lemma


a a8r i   x

i  9, 0r

2r 11;



b a8r  j   y

j 10,11,…, 2r 10,2r 12,…, 4r 11;



Proof



We shall apply lemma 3.14.1, 3.15 and 3.16 to prove a and b .



a  If

k  i  9


a	 a1	a2
8r k	4r k 4  8r k 1



a8r 81


1
4r 5 a



2
8r 8a


 xn1 1 x2 y 2  x.


If  k  i  2r  10


a8r 2r 10 


a8r 2r 10 

1
4r 2r 10 4 a



1 a

4r 2r 10 4

2
8r ( 2r 9)a



2a

8r ( 2r 9)



 y1 y2  y


If k  i  2r 11


a8r 2r 11

1
4r 2r 114 a


2
8r ( 2r 10)a



a8r 2r 11


1
4r 2r 114 a



2
2r 2a


 xn 1 1 y2  x



b a8r  j   y

j 10,11,…, 2r 10,2r 12,…, 4r 11


The proof is by induction.


a8r k

1
4r k 4 a


2
8r k 1a
.




Basis step:	For If

k  j  10

we have,




a8r 82


1
4r 6 a



2
8r 81a


 x 2 y1 x2  y



Induction step: suppose that

a8r k  y

for

k  10,11,…2r 10,2r 12,…,4r 11



a8r k 1
.

1
4r k 3 a


2
8r ka




From Lemma 3.14.5,

a4r i  y

7  i  2r  6

thus,



a4r i3  y

10  i  2r  9



a8r k 1

1
4r k 3 a


2
8r ka


 y1 y2  y


as required.
It is now clear from lemmas 3.14.5 to 3.14.7 and equations 3.13 to


3.16

that	the	map: 	defined	from	the	first	2	generators	of



F 4r  3, 8r  8

onto the two generators of Dn

is indeed morphism onto Dn



3.15 THE FIBONACCI GROUP

F 4r  5,

8r 12



Consider the Fibonacci group
F 4r  5, 8r 12  a1 , a2 ,…, a8r 12 ai ai1 ⋯ai4r 4  ai4r 5



i  1,2,…,8r  12 


where subscripts are taken modulo 8r 12 if necessary.

3.15.1  Lemma


For all

k  5

and

r  0 .


a. a	 a1 a2	;
4r k	k 6  4r k 1

b. a	 a1	a2	. ;
6r k	2r k 6  6r k 1


c a



8r k


1
4r k 6 a



2
8r k 1a
. .



Proof
We proof this lemma in a similar way we prove lemma 3.14.3.


a.

a4r k  ak 5ak 4 ⋯ a4r k 2 a4r k 1



1 a

k 6

(ak 6

ak 5

⋯ a4r k 2

)a4r k 1


 a 1 a 2	.
k 6  4r k 1

.	b a6r k  a2r k 5 a2r k 4 ⋯ a6r k 1


a6r k

1
2r k 6 a


(a2r k 6

a2r k 5

⋯ a6r k 2

)a6r k 1



1 a

2r k 6

2
6r k 1a
.




.	c

a8r k  a4r k 5 ⋯ a8r k 2 a8r k 1



1 a

4r k 6

(a4r k 6

a4r k 5

⋯ a8r k 2

)a8r k 1



1 a

4r k 6

2
8r k 1a
.



We now give the main result of this section.


3.15.2  Proposition

There exist a morphism from



F 4r  5, 8r 12



onto



Dn  for all



n  3.



Hence

F 4r  5, 8r 12 . is infinite.

We carry out the proof in a similar way we prove

F 4r  3, 8r  8	We



consider the case of

r  0

first, then r 1.



We define a mapping from the first 5 generators of

F 5,12

onto the two


generators of Dn by


a1 , a3  x

and

ai  y

i  2,4,5

(3.17).


Then we immediately see that


a6  a1

a2 a3

a4 a5

 xyxy2  y3  y.

(3.18) .


3.15.3  Lemma


If r  0

then, the following mappings hold in

F 5,12



a. a7 , a9

b. a8 , a10

 xn1;


 x2 y;


c. a11, a12  y.


Proof



We shall apply Lemma 3.15.1 to prove a and b



a a


 a 1 a 2

k	k 6  k 1

a  a 1a 2  x 1 y2  xn1.
7	1	6

The proof of a9 follows from the same argument


ba


 a 1 a 2

k	k 6  k 1

a  a 1a 2  y 1 xn1 2  x 2 y.
8	2	7

The proof of a10 follows from the same argument


d a


 a 1 a 2

k	k 6  k 1


a	 a 1a 2

 y 1 x 2 y2  y.

11	5	10

The proof of a12 follows from the same argument

3.15.4  Lemma


If r  0

then the following mappings hold in

F 5,12

a a13 , a15  x


b ak  y

k  14,16 and 17



Proof



a a





 a 1 a 2

k	k 6  k 1


a	 a 1a 2

xn1 1 y2  x.

13	7	12


The proof of

a15

follows from the same argument



ba


 a 1 a 2

k	k 6  k 1

a	 a 1a 2  x 2 y1 x2  y.
14	8	13


The proof of

ak , k  16 and 17

follows from the same argument


We now consider the case of r 1.We define a mapping from the first


4r  5

generators of

F 4r  5, 8r 12

onto the two generators of Dn



a1 , a2r 3  x

and

ai  y

i  2,3,…,2r  2,2r  4,…,4r  5.

(3.19).


Then we immediately see that


a4r 6

 a1 a2

⋯a4r 5

 xy 2r 1 xy 2r 2 

y 4r 3  y.

(3.20) .


3.15.5  Lemma
For r  1 .


a 


n1a	 x

4r 7

b


2a	 x y

4r 8



c


a4r i  y

9  i  2r  8



Proof



We shall apply lemma 3.15.1 and equation 3.19 and 3.20 to prove a



b

and c
a  a






 a 1 a 2

4r k


a

k 6


 a 1a 2

4r k 1

 x 1 y2  xn1

4r 7	1	4r 6


ba


 a 1 a 2

4r k


a

k 6


 a 1a 2

4r k 1

 y 1 xn1 2  x 2 y

4r 8	2	4r 7


(c)We use induction on i  k .
Basis step: By lemma 3.15.1 and equation 3.19



and 3.20, we see that for



k  9



a	 a 1a 2



 y 1 x2 y2  y.

4r 9	3	4r 8


Induction step: suppose that

a4r k  y

9  k  2rt  7.


Then using Lemma 3.15.1 again, we see that

a	 a 1 a 2	 y 1 y 2  y,

4r k 1

k 5

4r k


as required.

3.15.6  Lemma

For r  1


a a6r 9

b a6r 10


 xn1


 x2 y

c a6r i	 y

11  i  2r 12



Proof



We shall apply lemma 3.15.1 and equation 3.19 and 3.20 to prove a

b and c


(a)


a6r 9


1
2r 3 a



2
6r 8a


 x 1 y2  xn1



(b)


a6r 10


1
2r 4 a



a6r 9

 y 1 xn1 2  x 2 y


(c) the assertion may be proved by induction on i  k .

Basis step: for k  11 we see that



a6r 11


1
2r 5 a



2
6r 10a


 y 1 x 2 y2  y.



Induction step: suppose that

a6 r k  y

11  k  2r 11


Then using Lemma 3.15.1 again, we see that


a6r k 1

1
2r 5k a


2
6r ka




Since

k  10

it is clear that

(2r - 5) + k > 2r + 3

also

a	 xn1 , hence



a6r  k 16r k


1
2r 5k a


2
6r ka


 y 1 y 2  y.


as required.

3.15.7  Lemma


a

a8r i  

x	i  13, and

2r 15



b


a8r  j

 y	j 14,15,…, 2r 14, 2r 16,…, 4r 17



Proof



We shall apply lemma 3.15.1 and equation 3.19 and 3.20 to prove a

and b .

a

If i  k  13



a8r k

1
4r k 6 a


2
8r k 1a
.





a8r 13


1
4r 7 a



2
8r 12a


 xn1 1 y2  x


If i  2r 15
a	 a 1	a 2
8r 2r 15	4r 2r 156  8r 2r 14



1 a

6r 9


2
2r 2a


 xn1 1 y2  x


(c) Here we use induction on j  k .


Basis step: For

j  14

we have,



a8r k

1
4r k 6 a


2
8r k 1a
.




a8r 14

1
4r 14 a


2
8r 14 1a





a(8r 12)2


1
4r 8 a



2
8r 12 1a


 x2 y1 x2  y.



Induction step: suppose that

a8r  j   y

j 14,15,…, 2r 14,2r 16,…, 4r 16



a8r k 1

1
4r k 6 a


2
8r ka




From Lemma 3.15.5,

a4r  j  y

9  j  2r  8

thus,



a4r  j 6  y

15 

j  2r  14



a8r k 1

1
4r k 6 a


2
8r ka


 y 1 y 2  y.


as required.

CHAPTER FOUR
SUMMARY OF RESULTS, CONTRIBUTIONS AND AREAS FOR FURTHER RESEACH
4.1 SUMMARY OF RESULTS
We have, in this thesis, accomplished the following:
1. We obtained and discussed formulae for the number of even permutations (of an n -element set) having exactly k fixed points in the alternating group.
2. We obtained generating functions for the number of even permutations having exactly k fixed points in alternating group.
3. We also obtained similar results (as in 1 and 2 above) for the number of odd permutations having exactly k fixed points and their generating functions in the alternating group.
4. We give a geometric proof for the number of even (odd) permutations (of an
n -element set) having exactly k fixed points in the dihedral group.

5. We give an algebraic proof in line of Catarino and Higgins (1999) for the number of even (odd) permutations having exactly k  fixed points, in the

dihedral group.

6. We	proved	the	three	families:



F 2r,4r  2,



F 4r  3,8r  8


and



F 4r  5,8r  12

of the Fibonacci groups

F m , n

to be infinite by defining


morphism between Dihedral groups and the Fibonacci groups.


7. We give an alternative prove of the Cauchy’s formula

f m , n for be the



number	of	permutations	of

Xn	that	can	be	express	as	a	product  of



ri m  i 1, i  1, 2, ⋯, m 1

cycles.

4.2 CONTRIBUTIONS TO KNOWLEDGE
1. We obtained and discussed formulae for the number of even and odd

permutations (of an n  element set) having exactly k	fixed points in the

alternating group and the generating functions for the fixed points.
2. We give two different proofs of the number of even and odd permutations

(of an n  element set) having exactly k fixed points in the dihedral group, one
geometric and the other algebraic. In the algebraic proof, however, we further obtain the formulae for determining the fixed points.

3. We	proved	the	three	families;

F 2r,4r  2,

F 4r  3,8r  8

and



F 4r  5,8r  12

of the Fibonacci groups

F m , n

to be infinite by defining


Morphism between Dihedral groups and the Fibonacci groups.
4. We give an alternative prove of the Cauchy’s formula for the number permutations with a given cycle structure.
4.3 AREAS FOR FURTHER RESEACH
1. The new method we introduced may be tested for the two families


F 7  5i, 5

and

F 8  5i, 5

for integers

i  0

that remain unsettled by creating


morphism between the Fibonacci groups and a suitable permutation group

2. There is room for further research in the determination of more combinatorial properties of the permutation groups we discussed and other permutation groups.
3. The study of classification of transitive p groups of degree say pm in line

with Audu (1986a) can be considered, by obtaining the number of k  fixed

points and the generating functions for the fixed points of transitive p groups

of degree say pm .

4. The study of permutations as even(odd) according to its length can be considered using number of fixed points.
5. The number of even (odd) permutations with a given cycle structure.

6. The number of cycle structures in a given permutation.
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