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[bookmark: _bookmark4]ABSTRACT

The restructuring of the electrical power industry has given rise to a high degree of vibrancy and competitive market, which changed many features of the power industry. Energy resources become scarce, the cost of power generation increases, environmental concerns are raised, and an ever-increasing demand for electrical energy characterizes this now-altered scenario. In this perspective, Economic Load Dispatch (ELD) is necessitated. Strong heuristic techniques can go a long way in determining the optimum solution to such technical problems having large number of possible solutions. In the proposed research work, two heuristic algorithms namely: Genetic Algorithm (GA) and Artificial Fish Swarm Algorithm (AFSA) are hybridized to yield a more robust technique called “Hybrid Genetic-Artificial Fish Swarm Algorithm”, (HGAFSA) that is suitable for solving complex ELD problems. The technique is then applied to solve a multi- objective ELD problem involving higher order cost functions that includes the effects of valve- point loading and multiple fuel cost function. The proposed approach was validated using five standard IEEE test systems for 13, 40, 110, 140, and 160 generating unit systems. Testing of the developed HGAFSA based ELD algorithm (HGAFSAELDA) yielded reduction in fuel cost by 1.53%, 0.03%, 0.07%, 0.00012% and 1.37% for the 13, 40, 110, 140 and 160 generating units respectively. An annual savings in fuel cost of $3.254e+06, $3.8235e+05, $2135.7,
$9.5563e+06, and $1.1588e+06 for the 13, 40, 110, 140, and 160-generating-units respectively were achieved over the existing best costs presented in (Pradhan et al., 2017). HGAFSA based optimization curves and the Cumulative Power Generation curves are also presented to demonstrate how the inequality constraints are satisfied by each of the generating units.
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1.1 [bookmark: _bookmark10][bookmark: _bookmark10]BACKGROUND OF RESEARCH

The efficient and optimum economic operation and planning of electric power generation systems have always occupied a vital position in the electric power industry (Gargeya & Pabba, 2013). Economic load dispatch (ELD) is a process of allocating generation levels to dispersed generating power plants so that the system is fully supplied in the most economical way (Harpreet Kaur et al., 2015). It can also be defined as the operation of generation facilities to produce energy at the lowest cost to reliably serve consumers recognizing any operational limits of generation and transmission facilities. ELD is simply a technique used to schedule the outputs of available generating units for a particular time that minimizes the total production cost while satisfying equality and inequality constraints (Pothiya et al., 2008), Prior to 1973 and the oil embargo that caused the rapid increase in fuel prices, electric utilities in the United States spent about 20% of their total income on fuel for the production of electrical energy (Alsumait et al., 2010). An idea of magnitude of the amounts of money was under consideration, and could be obtained by considering the annual operating expenses of a large utility for buying fuel. Based on assumption proposed by Gargeya & Pabba, 2013, the following parameters for a moderately large power system:
i. Annual peak load= 10,000MW;

ii. Annual load factor= 60%;

iii. Average annual heat rate for converting fuel to electric energy= 10,550.56KJ/kWh;

iv. Average fuel cost= $3.00/1.055GJ, corresponding to oil price at $18/Bbl.

 (
100
)
With these assumptions, the total annual fuel cost for the system is as follows:

I. Annual energy produced =107 MW * 8760h/year * 0.60 = 5.256 * 1010kWh;

II. Annual fuel consumption= 10,550.56KJ/kWh * 5.256 * 1010 kWh = 55.45 * 1013KJ;

III. Annual fuel cost = 55.45* 1013 * 3/1.055* 10-9 $/J = $1.5767million.

This cost represents a direct requirement for revenues for the average customer of the system of 3.15cents/kWh aimed at recovering the expense for fuel. A savings in the operation of the system of small percent represents a significant reduction in operating cost, as well as in the quantities of fuel consumed. It is not surprising that this area has warranted a great deal of attention from the engineers through the years.
However, periodic changes in basic fuel price levels serve to accentuate the problem and increase its economic significance. Inflation also causes problems in developing and presenting methods, techniques, and examples of economic operation of electric power generating systems (Al-Othman & El-Naggar, 2008).
Moreover, rapid growth in power system size and electrical power demand has resulted into a problem of reducing the operating cost while maintaining voltage security and thermal limits of transmission line branches (Alsumait et al., 2010). A large number of mathematical Optimization Technique such as: GA based ELD; PSO based ELD; Hybrid GA-PSO based ELD; Dynamic Programming based ELD; Evolutionary Programming based ELD; to mention but a few have been applied to solve ELD problems. In most general formulation, the ELD problem is modeled as a non-linear, non-convex, large scale, static optimization problem with both continuous and discrete control  variables (Burns & Gibson, 1975).

Furthermore, the non-linear convex nature of ELD problems has led most researchers such as: (Burns & Gibson, 1975), (Pothiya et al., 2008), (Al-Othman & El-Naggar, 2008), and others to model ELD problem using purely quadratic functions in which the quadratic coefficients are defined at the beginning of the solution search process. Whereas, more realistic models have also been developed in some other research works which includes those of: (Alsumait et al., 2010), (Sinha & Chakrabarti, 2003), (Sun et al., 2014), (Mohammadi-Ivatloo & Rabiee, 2013), (Jubril & Komolafe, 2013); etc. These models incorporated the effect of valve point loading and multiple fuel cost functions into ELD problem formulation.
However, the proposed research work will try to address an ELD problem through the development of a more realistic model that will account for the following effects of Valve-Point Loading (VPL), Multiple Fuel Cost Function (MFCF), Ramp Rate (RR) and Prohibited Operating Zone (POZ).
These result into a multi-objective optimization problem that tends to minimize the cost of fueling the generating units during the operation. This kind of complex optimization problem requires the use of robust techniques to achieve a reliable solution. Although, this optimization problem can be solved to some extent, using the heuristic techniques earlier mentioned, but the effectiveness of the solution cannot be guaranteed in the case of large power system.
In order to proffer solution that can be reliable and more efficient, a hybridization of two conventional heuristic techniques (Genetic Algorithm and Artificial Fish Swarm Algorithm) is proposed for solving the complex optimization problem, which give rise to a technique called “ Hybrid G-AFS Algorithm” or simply HGAFSA. The choice of GA and AFSA were based on the following reasons:

a. GA is a widely known heuristic technique that has a well-defined set of search equations that have been proven to be effective in solving problems such as: Optimal Location and Sizing of Distributed Generators and Capacitor Banks, (Moradi & Abedinie, 2010), (Atwa et al., 2010); Optimal Power Flow, (López-Lezama et al., 2012); Optimal Location of Tie and Sectionalizing Switches in Distribution System, (Rao et al., 2013); Optimal Network Expansion (Bernardon et al., 2014), A hybrid GA–PS–SQP method to solve power system valve-point economic dispatch problems (Alsumait et al., 2010); etc.
b. AFSA on the other hand is a relatively new heuristic technique that is made up of well refined and sophisticated solution-search equations and has gained large application in areas like: Controller Design, (Fang et al., 2014); Optimal PID Tuning, (Amir Ghoreishi et al., 2011); Objective Function Minimization/ Maximization, (Wei Guo et al., 2011) (Huang et al., 2006); etc.

1.2 Motivation/Justification

I derive my motivation from the fact that over the years researchers have tried to address the problem of economic load dispatch with the main focus of how to commit the online generating units economically in order to generate electricity at a minimum cost while addressing generator constraints. The modern power systems encounter numerous technical and economic difficulties under competitive deregulated environment. The generation companies’ (GENCOs) aim is to produce electric power at minimum cost therefore; proper allocation of power generation of the existing units may lead to significant savings in cost. This could be achieved by incorporating multiple fuel option into the economic dispatch problems.

1.3 [bookmark: _bookmark11][bookmark: _bookmark11]Problem Statement

The modern power system around the world has grown in complexity of interconnection and power demand. The focus has shifted towards the enhanced performance, increased customer focus, low cost, reliable and clean power. In this changed perspective, scarcity of energy resources, increasing power generation cost and environmental concern necessitates economic load dispatch (ELD). In reality power stations, neither are at equal distances from load nor have similar fuel cost functions. Hence for providing cheaper power, load has to be distributed among the various power stations in a way that will result in lowest cost of generation. Practical economic dispatch (ED) problems have highly nonlinear objective function with equality and inequality constraints. Conventional methods such as lambda iteration method, gradient method and non-conventional method such as the heuristic method earlier discussed have been applied to solve the Economic Load Dispatch (ELD) problem. However, these techniques may not give optimal solution because they require incremental fuel cost curves which are piecewise linear and monotonically increasing to find the global optimal solution. In the proposed research work, a hybridization of two heuristic techniques namely: Artificial Fish Swarm Algorithm (AFSA); and Binary Coded Genetic Algorithm (BCGA), will be carried out in order to form a more robust technique called “Hybrid Genetic-Artificial Fish Swarm Algorithm”, (HGAFSA). The technique will then be applied to solve a non-linear ELD problem considering the effects of valve-point loading, multiple fuel cost functions, ramp rate and prohibited operating zone. The effectiveness of the proposed approach will be demonstrated using five standard IEEE test systems (13, 40, 110, 140, and 160 generating unit systems); and finally comparing the results with those presented in (Pradhan  et al., 2017)

1.4 [bookmark: _bookmark12][bookmark: _bookmark12]Aim and Objectives

The aim of the proposed research work is to develop a Hybrid Genetic-Artificial Fish Swarm Algorithm (HGAFSA) and use it in solving a non-linear ELD problem considering the effects of: valve-point loading and multiple fuel cost. In achieving this, the following objectives will be met:
1. To hybridize Genetic Algorithm (GA) with Artificial Fish Swarm Algorithm (AFSA) to form a more robust algorithm called HGAFSA.
2. To model a higher order ELD problem while considering the effects of valve-point loading, multiple fuel cost function, ramp rate and prohibited operating zone.
3. To solve the resulting ELD problem in (2) using the developed algorithm in (1) and demonstrate the effectiveness of the proposed approach using five standard test systems (13, 40, 110, 140, and 160 generating unit systems); and finally comparing the results
with those presented in (Pradhan et al., 2017).

1.5 [bookmark: _bookmark13][bookmark: _bookmark13]Scope of Work and Limitation

The following items are the step by step approach that will constitute the scope of the proposed research work:
1. For the ELD, valve point loading, multi fuel cost function, ramp rate and prohibited operating zone effects were considered while emissions were not considered; hence the impact of emissions to ELD objective function was not quantified.
2. GA and AFSA algorithms were formulated using matrix definition method to aid hybridization.

3. A simulation test framework is developed in MATLAB to demonstrate the effectiveness of the formulated multi-objective ELD problem using five standard IEEE test systems. Actual transmission network was not considered.
4. The power demand considered for the networks were based on the reference in Pradhan

et al., (2017).

5. The proposed ELD uses Encoder and Decoder to serve as an interface between GA and AFSA.


1.6 [bookmark: _bookmark14][bookmark: _bookmark14]Dissertation Organization Outline

This chapter describes ELD problem and a brief overview of its solution strategies. However, it forms the introductory chapter. The aim and objectives together with problem statement, methodology and significant contributions are also presented in this chapter. The rest of the chapters are organized as follows. Chapter two presents the literature review of the fundamental concepts and similar works regarding ELD problem formulation and solution approaches. Chapter three presents the methods and materials used for this research work. Chapter four presents the simulation setup, results and analysis. Finally Chapter five presents the conclusion, recommendations and limitations. Quoted references and appendices are also provided at the end of the dissertation.

[bookmark: _bookmark15]CHAPTER TWO LITERATURE REVIEW

2.1 [bookmark: _bookmark16][bookmark: _bookmark16]Introduction

In carrying out the research work, some literatures were reviewed, which served as a guide towards achieving the set goals. The review of these relevant literatures is categorized into two parts namely: review of fundamental concepts, and review of similar works, which are further discussed as follows.

2.2 [bookmark: _bookmark17][bookmark: _bookmark17]Review of Fundamental Concepts

Some of the fundamental concepts regarding the proposed research work are discussed as follows.

2.2.1 [bookmark: _bookmark18][bookmark: _bookmark18]Thermal power plant

A thermal power plant is a power plant in which its prime mover is driven by steam. Water is the working fluid. It is heated at the boiler and circulated with energy to be expanded at the steam turbine. To give work to the rotor shaft of the generator after it passes through the turbine, it is condensed in a condenser and then pumped to feed the boiler where it is heated (Vanita & Thanushkodi, 2011). For simplification, thermal power plants can be modeled as energy conversion from fossil fuel to electricity as described in Figure 2.1.
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Figure 2.1: Energy conversion in a thermal power plant (Vanita & Thanushkodi, 2011)


The thermal unit system generally consists of the boiler, steam turbine and generator. The input of the boiler is fuel and the output is steam. The relationship between the input and output can be expressed as a convex curve (Vanita & Thanushkodi, 2011). The input of the turbine – generator unit is the volume of steam and the output is electrical power, the overall input-output characteristic of the whole generation unit can be obtained by combining directly the input- output characteristics of the boiler and the input-output characteristic of the turbine-generator unit (Vanita & Thanushkodi, 2011).

2.2.2 [bookmark: _bookmark19][bookmark: _bookmark19]Generator operating cost

The total cost of operation includes the fuel cost, cost of labour, supplies and maintenance. Generally, cost of labour, supplies and maintenance are fixed percentages of incoming fuel cost. Other factors influencing power generation are operating efficiencies of generators and transmission losses (Vlachos, 2011). The total cost of generation is a function of the individual generation of the sources which can take values within certain constraints. The problem is to determine the generation of different plants such that total operating cost is minimum. The input of the thermal plant is generally measured in Btu/hr and the output power is the active power in MW. A simplified input – output curve of a thermal unit is known as heat – rate curve and it is

 (
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Cost
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)shown in Figure 2.2 (Vlachos, 2011). Where 𝑃𝑖,𝑚𝑖𝑛 and 𝑃𝑖,𝑚𝑎𝑥 are minimum and maximum power generation by the ith generating unit.


[bookmark: _bookmark20]P min
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Figure 2.2: Heat rate curve (Vlachos, 2011)




2.2.3 Fuel efficiency

This is the ratio of power output in megawatt (MW) to fuel input in Btu/hr. The criterion of distributing the load between any two units is based on whether increasing the load in one unit as the load is decreased on the other unit by the same amount results in the increase or decrease in total load (Surekha & Sumathi, 2012).

2.2.4 Incremental cost (IC)

This is the limit of the ratio of increase in cost of fuel input in dollars per hour to corresponding increase in power output in megawatts as the increase in power output approaches zero. Incremental cost is the slope of the fuel cost curve, and the unit of IC is in dollars per megawatt hour (MWh). IC tells us how much it will cost to run a generator to produce an additional1MW

of power. All units in power plant must operate at the same incremental fuel cost for minimum cost in dollars per hour (Yun et al., 2011).

2.2.5 [bookmark: _bookmark21][bookmark: _bookmark21]Economic Load Dispatch (ELD) formulation

The objective of an ELD problem is to find the optimal combination of power generations that minimizes the total generation cost while satisfying equality and inequality constraints. The fuel cost curve for any unit is an approximation of segments of quadratic functions of the active power output of the generator by assumption (Balamurugan & Subramanian, 2008).

2.2.6 [bookmark: _bookmark22][bookmark: _bookmark22]The cost function

Cost function is a financial term used for expressing how differently costs can behave under a variety of circumstances. It shows how monetary outputs, everything from overhead and operating expenses to charges and fees change as the levels of an activity relating to those outputs change (Balamurugan & Subramanian, 2008). There are three basic types of linear cost functions:
1. Fixed cost functions.

2. Variable cost functions.

3. Mixed cost functions.

In a mixed circumstance, the cost will be fixed to a certain point that can be changed based on related activity. Analysts use these sorts of functions to make important predictions about the market place and to inform a variety of decision making tasks (Balamurugan & Subramanian, 2008).

 (
𝑖=1
) (
𝑖
)For a given power system network, the problem may be described as optimization (minimization) of total fuel cost as defined by equation (2.1) under a set of operating constraints (Vlachos, 2011).


 (
𝑖=1
)𝐹𝑇 = ∑𝑛

𝐹(𝑃𝑖) = ∑𝑛

𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖 𝑃2	(2.1)



Where FT represents the total fuel cost of generation in the system ($/hr), ai, bi, and ci are the cost coefficients of the ith generator, Pi is the power generated by the ith unit and n is the number of generators (Vlachos, 2011).
The cost is minimized subject to the following generator capacities (inequality) and active power balance (equality) constraints, as given by equations (2.2) and (2.3) respectively (Vlachos, 2011):
𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑚𝑎𝑥      𝑓𝑜𝑟   𝑖 = 1,2, … . , 𝑛	(2.2) Where Pi,min and Pi,max are the minimum and maximum power output respectively of the ith unit.

 (
𝑖=1
)𝑃𝐷 = ∑𝑛

𝑃𝑖 − 𝑃𝐿𝑜𝑠𝑠

(2.3)


Where PD is the total power demand and PLoss is total transmission loss. The transmission loss

PLoss is defined by (2.4) as follows (Vlachos, 2011),


 (
𝑖=1
)𝑃𝐿𝑜𝑠𝑠 = ∑𝑛


 (
∑
)𝑛
𝑗=1

𝑃𝑖 𝐵𝑖𝑗𝑃𝑗 + ∑𝑛


𝐵𝑖0𝑃𝑖

+ 𝐵00	(2.4)



 (
𝑖=1
)Where the Bijs are the elements of loss coefficient matrix B.

The cost function defined by FT in equation (2.1) assumed a smooth quadratic fuel cost function without valve point (valve-point effects are ignored) loadings of the generating units. Such curve can be represented by the dotted line shown on Figure 2.3. The generating units with multi-valve steam turbines exhibit a greater variation in the fuel-cost functions. Since the valve point results

in ripples, a cost function contains higher order nonlinearity. Therefore, the function F(Pi) in equation (2.1) should be replaced by equation (2.5) when considering the valve-point effects (Vanita & Thanushkodi, 2011).
Sinusoidal functions are thus added to the quadratic cost function to account for the valve-point effect:
 (
𝑖
)𝐹(𝑃𝑖) = 𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖𝑃2 + |𝑒𝑖 × sin(𝑓𝑖 × (𝑃𝑖,𝑚𝑖𝑛 − 𝑃𝑖))|	(2.5)

Where ei and fi are the fuel cost coefficients of the ith unit with valve point effects. In figure 2.3 below, a, b, c, d, e and f are valve points.

[image: ]



[bookmark: _bookmark23]Figure 2.3: Incremental Fuel Cost Curve of a Typical Generating Unit (Vanita & Thanushkodi, 2011)

It is to be noted here that the fuel cost coefficients ei and fi are introduced in equation (2.5) to model the valve point loadings.
In practical situations, generating units are made up of subunits. These subunits combine to give rise to the overall installed capacity of the unit. Most units are designed to operate using more than one fuel type (source), particularly in the case where there is a great fluctuation in the price and availability of the dominant fuel types (Balamurugan & Subramanian, 2008). In the case of moderately large units, a combination of the available fuel types may be used to cover the power demand over the specified period of time. This type of scenario introduces a greater non-linearity into the overall fuel cost function. Therefore, the fuel cost function of such system can be modeled using multiple fuel cost function which is only defined for a particular range of power output within the specified maximum and minimum power generation. Considering both the valve point loading effect and multiple fuels, the cost function of the system may be easily represented using equation (2.6) (Balamurugan & Subramanian, 2008).

ai1 + bi1Pi + ci1P2 + |ei1 × sin(fi1 × (Pi1,min − Pi1))|	Fuel1: Pmin ≤ Pi ≤ Pi1
i	i
ai2 + bi2Pi + ci2P2 + |ei2 × sin(fi2 × (Pi2,min − Pi2))|	Fuel2: P min ≤ Pi ≤ Pi2

F(Pi) =

_	i	_	_	_

i1	_

_	_	_	_	_
𝗅aik + bikPi + cikP2 + |eik ×  sin(fik × (Pik,min − Pik))|	Fuelk: P  min ≤ Pi ≤ Pmax

i	ik−1

ik

(2.6)



2.2.7 [bookmark: _bookmark24][bookmark: _bookmark24]Solution by Lagrange method

The Lagrange cost minimization function may easily be represented using (2.7) as follows (Sinha & Chakrabarti, 2003):
𝐿 = 𝐹𝑇 + 𝜆∅	(2.7)

In other words, the Lagrange function is defined by cost function FT plus the constraint function φ multiplied by a penalty coefficient λ. This penalty coefficient is set in order to limit the extent to which a set of predefined constraints are violated. Then to minimize L, its derivative with respect to Pi needs to be set to zero. This will generate a system of simultaneous equations which can be termed as "Coordination Equations", and their solution minimizes the costs, as in equation (2.8) (Sinha & Chakrabarti, 2003):


𝜕𝐿

= 𝑑𝐹𝑖 − 𝜆 (1 − 𝜕𝑃𝐿) = 0	(2.8)

𝜕𝑃𝑖

𝑑𝑃𝑖

𝜕𝑃𝑖


With this, the inequality conditions specified in equation (2.2) expand to the following set of equations (2.9) to (2.11) (Sinha & Chakrabarti, 2003):


𝑑𝐹𝑖  = 𝜆:	𝑃

≤ 𝑃

≤ 𝑃

(2.9)

𝑑𝑃𝑖

𝑖,𝑚𝑖𝑛	𝑖

𝑖,𝑚𝑎𝑥



𝑑𝐹𝑖  < 𝜆:	𝑃


= 𝑃


(2.10)

𝑑𝑃𝑖

𝑖	𝑖,𝑚𝑎𝑥



𝑑𝐹𝑖  > 𝜆:	𝑃


= 𝑃


(2.11)

𝑑𝑃𝑖

𝑖	𝑖,𝑚𝑖𝑚


These inequalities signify the fact that any unit with incremental cost higher than λ is "expensive" and should be set to operate at lowest level of production. In this way all equations are solved until all conditions are satisfied. The main point of concern is analyzing and limiting the level of production for each unit. In this Lagrange method, the transmission loss function defined in (2.4) is also applied during loss estimation (Sinha & Chakrabarti, 2003).

2.2.8 [bookmark: _bookmark25][bookmark: _bookmark25]Solution by Dynamic programming method

Dynamic programming is a method of solving complex problems by breaking them down into simpler sub-problems. It is applicable to problems exhibiting the properties of overlapping sub- problems and optimal substructure. When applicable the method takes far less time than naïve methods which don’t take advantage of the sub-problem overlap. The idea behind DP is quite simple. In general, to solve a given sub-problem, we need to solve different parts of the problem, and then combine the different parts of the solution to get an overall solution. Often when using a more naïve method, many of the sub-problems are generated and solved many times. DP approach seeks to solve each sub-problem only once, thus reducing the number of computations. Once the solution to a given sub-problem has been computed it is stored. The next time the same solution is needed it is simply looked up. The approach is especially useful when the number of repeating sub-problems grow exponentially as a function of the size of the input (Sun et al., 2014).

2.2.9 [bookmark: _bookmark26][bookmark: _bookmark26]Solution by Quadratic programming method

A linearly constrained optimization problem with a quadratic objective function is called a Quadratic Program (QP). Due to its numerous applications; quadratic programming is often viewed as a discipline in and of itself (Jubril & Komolafe, 2013). Quadratic programming is an efficient optimization technique to trace the global minimum if the objective function is quadratic and the constraints are linear. Quadratic programming is used recursively from the lowest incremental cost regions to highest incremental cost region to find the optimum allocation. Once the limits are obtained and the data are rearranged in such a manner that the incremental cost limits of all the plants are in ascending order. The general quadratic programming can be written as in equation (2.12) and (2.13) (Jubril & Komolafe, 2013):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:

𝑓(𝑥)

= 𝑐𝑥 +

1 𝑥𝑇𝑄
2

(2.12)



𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝐴𝑥 ≤ 𝑏	(2.13)

and

𝑥 ≥ 0	(2.14)

Where c is an n-dimensional row vector describing the coefficients of the linear terms in the objective function, and Q is an (n × n) symmetric matrix describing the coefficients of the quadratic terms. If a constant term exists it is dropped from the model. As in linear programming, the decision variables are denoted by the n-dimensional column vector x, and the constraints are defined by an (m×n) matrix A and an m-dimensional column vector b of right- hand-side coefficients (Jubril & Komolafe, 2013). We assume that a feasible solution exists and that the constraint region is bounded. When the objective function f(x) is strictly convex for all feasible points the problem has a unique local minimum which is also the global minimum. A sufficient condition to guarantee strictly convexity is for Q to be positively definite. If there are only equality constraints, then the QP can be solved by a linear system. Otherwise, a variety of methods for solving the QP are commonly used, namely; interior point, active set, conjugate gradient, extensions of the simplex algorithm etc. (Jubril & Komolafe, 2013).

2.2.10 [bookmark: _bookmark27][bookmark: _bookmark27]Solution by Non-linear programming method

Power system operation problems are nonlinear. Thus nonlinear programming (NLP) based techniques can easily handle power system operation problems with nonlinear programming problem, the first step in this method is to choose a search direction in the iterative procedure

which is determined by first partial derivatives of the equations (Pothiya et al., 2008). Therefore, these methods are referred to as the first order methods, such as generalized reduced gradient method. NLP based methods have higher accuracy than linear programming based approaches and also have global convergence, which means that the convergence can be guaranteed independent of the starting point, but a slow convergence rate may occur because of zig-zagging in the search direction (Pothiya et al., 2008).

2.2.11 [bookmark: _bookmark28][bookmark: _bookmark28]Solution by Newton’s method

Newton’s method requires the computation of the second order partial derivatives of the power flow equation and other constraints and is therefore called a second – order method. The necessary conditions of optimality commonly are the Kuhn –Tucker conditions. Newton’s method is favored for its quadratic convergence properties (Pothiya et al., 2008).

2.2.12 [bookmark: _bookmark29][bookmark: _bookmark29]Solution by Heuristic approaches

Nature-inspired meta-heuristics are currently among the most effective tools for optimizing many NP-hard combinatorial problems. These methods are fundamental principles on which existing mechanisms of a biological phenomenon of nature are based. The natural systems are the most interesting inspiration for designing new methods to solve many optimization problems. The ant systems, artificial fish swarm, particle swarm optimization and bee algorithms are the techniques inspired from observing nature. These algorithms use the behavior of swarm intelligence. So they are based on a live insects or simple interactions among individual entities (Holland, 1975).

2.2.12.1 [bookmark: _bookmark30][bookmark: _bookmark30]Particle swarm optimization

Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired by the social behavior of flocks of birds or schools of fish. In PSO the potential solutions called particles, fly through the problem space by following the current optimum particles. The particles change their positions by flying around in a multidimensional search space until a relatively unchanged position has been exceeded (Li et al., 2013). A particle bases its search not only on its personal experiences but also by the information given by its neighbors in the swarm. Each particle keeps track of its coordinates in the problem space, which is associated with the best solution fitness it has achieved so far. The fitness value is also stored. This value is called pbest. Another best value that is tracked by the particle swarm optimizer is the lbest value obtained thus far by any particles in the neighbors of the particle (Li et al., 2013). This location is called lbest. When a particle takes the whole population as its topological neighbors, the best value is a global best and is called gbest. The main advantages of PSO are: easy implementation, single concept, robustness to control the parameters and less computational time compared to other optimization techniques while its disadvantages are: possibility of being trapped in local optimum, problems of dependency on initial point and parameter and difficulty in finding optimal design parameters and stochastic characteristic of the final outputs (Li et al., 2013).

2.2.12.2 [bookmark: _bookmark31][bookmark: _bookmark31]Artificial fish swarm algorithm

Artificial fish swarm algorithm (AFSA) is a novel method for searching global optimum, which is typical of behaviorism in artificial intelligence. If there are N artificial fish in a swarm and that the vector X is the individual state of the artificial fish, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) where 𝑥1(𝑖 = 1, … , 𝑛) is the variable to be optimized of AFSA, Y=f(X) is the food concentration of the

artificial fish at the current position and Y is the objective function of practical problems.

Dij=||Xi-Xj|| is the distance between the individual artificial fish i and the individual artificial fish

[image: ]j. The other important parameters such as the visual field of the artificial fish, the maximum moving step, the congestion factor and the maximum number of tries in every forage are expressed as Visual, Step, d and Try-number (Azad et al., 2014). The congestion factor is to limit the fish swarm size of the artificial fish swarm so as to make more artificial fish individuals gather in the region with better state rather than the neighborhood with suboptimal state (Azad et al., 2014).

[bookmark: _bookmark32]Figure 2.4: The visual and step of artificial fish (Azad et al., 2014) The behaviors of artificial fish include: forage, swarm and follow.

1. Forage: If we assume that the current state of artificial fish is Xi and let this artificial fish carries out forage, it will at first select a state Xj randomly within its visual field. In seeking minimum, if Yi≥Yj, then forage will be completed if moving one step towards this direction; if Yi≤Yj, reselect a state Xj randomly and judge whether it satisfies the condition to move forward. After repeating this for a Try-number times, if it does not fulfill the forwarding condition, randomly move one step. This can be represented
mathematically as in equation (2.15)(Costa et al., 2014):
.
 𝑥𝑗𝑘−𝑥𝑖𝑘 
𝑥	= 𝑥	+	. 𝑅𝑎𝑛𝑑𝑜𝑚 (𝑠𝑡𝑒𝑝)	𝑌 > 𝑌

{ 𝑖𝑛𝑒𝑥𝑡𝑘

𝑖𝑘

||𝑋𝑗−𝑋𝑖||

𝑗	𝑖

(2.15)

𝑥𝑖𝑛𝑒𝑥𝑡𝑘	=  𝑥𝑖𝑘 + 𝑅𝑎𝑛𝑑𝑜𝑚(𝑠𝑡𝑒𝑝)	𝑌𝑗 ≤ 𝑌𝑖



Where: k=1, 2,	, n,

xij represents the k-th element of the current state vector Xj of artificial fish.

xjk represents the k-th element of the state vector Xj after random movement xinextk represents the k-th element of the next state vector Xinext of artificial fish. Yi represents the objective function value of the current state.
Yj denotes the objective function value after random movement, Random (step) denotes a random number within [0 step].


2. Swarm: While swarming, fish has the natural ability to share the food and avoid any causes of distraction in the way. If the current state of the artificial fish is Xj and the number of companions in its visual domain is n. If nf= 0, it means that there is no companion in its visual domain and then implement forage, If nf≥0, it shows that there

are companions in its visual domain and then search the central position Xc ( i.e centre between the fishes) of its companions according to equation (2.15)(Costa et al., 2014).



𝑋𝑐𝑘

𝑛𝑓
 (
𝑗=1
)( ∑	𝑥𝑗𝑘)
=
𝑛𝑓


(2.16)



Xc represents the state vector of the central position between fishes;

Xck represents the k-th element of the state vector Xc of the central position;

Xjk represents the k-th element of the j (j = 1, 2,…., n,) companion Xj; Yc represents the objective function value of the central position.
Calculate the food concentration Yc of the central position. Satisfying the following condition: Yc.nf /Yi>1. It indicates that the central position is not very congested and it is quite safe and then move toward this central position according to equation (2.16); otherwise, implement forage (Costa et al., 2014).


𝑥𝑖𝑛𝑒𝑥𝑡𝑘


= 𝑥𝑖𝑘

+ 𝑥𝑐𝑘−𝑥𝑖𝑘 . 𝑅𝑎𝑛𝑑𝑜𝑚. (𝑠𝑡𝑒𝑝)	(2.17)
||𝑋𝑐−𝑋𝑖||


3. Follow: In the moving process of artificial fish swarm, when a single fish or several ones find food, the neighborhood partners have the natural ability to trail and reach the food quickly. If the current state of the artificial fish is Xi and the number of companions in its visual domain is n. If nf=0, it implies that there is no companion in its visual domain and then implement forage; If nf≥1, it is an indication that there are companions in its visual domain and then search the companion with the minimum corresponding function value Xmax in its visual domain. If it satisfies Ymax.nf /Yi>1. It shows that the companion has small fitness value and that it is not very congested around here and then implement (2.18); otherwise, implement forage (Costa et al., 2014).

𝑥𝑖𝑛𝑒𝑥𝑡𝑘

= 𝑥𝑖𝑘

+ 𝑥𝑚𝑎𝑥,𝑘−𝑥𝑖𝑘 . 𝑅𝑎𝑛𝑑𝑜𝑚. (𝑠𝑡𝑒𝑝)	(2.18)
||𝑋𝑚𝑎𝑥−𝑋𝑖||


Xmaxk represents the k-th element of the state vector Xmax.

4. 	Bulletin board: The function of bulletin board is to record the state of the optimal artificial fish. At the optimization iteration, each artificial fish individual examines and makes comparison of its own state with the current state on the bulletin board. If the state on the bulletin board is inferior to its own state, it substitutes the state on the board with its own state; in this way, the historical optimal state can always be recorded on the bulletin board and the final recorded optimal value is the optimal solution (Costa et al., 2014).
Based on the behavior description of the above-mentioned artificial fish, every artificial fish searches its environmental conditions and its companions to choose an appropriate behavior in order to move rapidly towards optimal direction. Finally, the artificial fish gathers around several local optimums. The algorithm of implementation flow includes (Fang et al., 2014):
I. Initialization: define the population size as N; generate randomly N individuals within the definition domain of the variable and assign the maximum generation Gen max, the generation Gen, the visual field of the artificial fish Visual, the moving step of the artificial fish Step, the congestion factor d and the trials Try-number.
II. Assign the value on the bulletin board: calculate and compare the corresponding fitness value to every individual fish; choose the optimal state of the artificial fish and assign its value to the bulletin board.

III. Choose implementation behavior: every artificial fish simulates swarm and follow; implement the optimal behavior by comparing the fitness value; the default behavior is forage and Gen=Gen +l.
IV. Update the bulletin board: compare the fitness value of every artificial fish and the value on the bulletin board, replace it if it is better than the value on the bulletin board; otherwise, keep the value on the bulletin board unchanged.
V. Judge end condition: when Gen>Gen max, end the algorithm and output the optimal value; otherwise, turn to step (III).
Figure 2.5 shows the flow chart of the AFSA algorithm
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[bookmark: _bookmark33]Figure 2.5: Flowchart of Artificial Fish Swarm Algorithm (Fang et al., 2014)


2.2.12.3 [bookmark: _bookmark34][bookmark: _bookmark34]Genetic algorithm

The idea of evolutionary computing was introduced in 1960 by Rechenberg in his work “Evolutionary strategies”. GA is a computerized search and optimization algorithm based on mechanics of natural genetics and natural selection. Prof. John Holland of University of Michigan conceived the concept of these algorithms in the mid-sixties and published (Chatterjee et al., 1996).

A genetic algorithm (GA) is a search and optimization method which works by mimicking the evolutionary principles and chromosomal processing in natural genetics. A GA begins its search with a random set of solutions usually coded in binary strings. Every solution is assigned a fitness which is directly related to the objective function of the search and optimization problem. Thereafter, the population of solutions is modified to a new population by applying three operators similar to natural genetic operator (Chatterjee et al., 1996):
1. Reproduction;

2. Crossover; and

3. Mutation.

It works iteratively by successively applying these three operators in each generation till a termination criterion is satisfied. Over the past decade and more, GA has been successfully applied to a wide variety of problems, because of their simplicity, global perspective, and inherent parallel processing (Chatterjee et al., 1996)...
The GA is an iterative optimization procedure which works with a number of solutions (collectively known as population) instead of working with a single solution in each iteration. The steps involved in genetic algorithm are further described as follows (Chatterjee et al., 1996):
I. [image: ]Representation: In a binary coded GA, every variable is first coded in a fixed-length of binary string. For example, a string representing N problem variables is illustrated below:


String Representation of N-problem Variables (x) (Chatterjee et al., 1996)

The ith problem variable is coded in a binary substring of length li, so that total number of alternatives allowed in that variable is 2li. The lower bound solution Ximin is represented by

solution (0, 0… 0) and the upper bound solution Ximax is represented by the solution (1, 1… 1). And other substring si decodes to a solution Xi as follows;



𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛	.

𝑋𝑖 = 𝑋	+   𝑖	𝑖	𝐷𝑉(𝑠 )	(2.19)

 (
𝑖
)𝑖	𝑙
||2

−1||	𝑖



Where 𝐷𝑉(𝑠.) is decoded value of string 𝑠.. The decoded value of a binary substring 𝑠. = (si-1,si-
𝑖	𝑖	𝑖

 (
𝑗=0
)2,….,s2,s1,s0) is calculated as∑𝑙−1 2𝑗𝑠𝑗, where𝑠𝑗𝜖[0,1]. The length of substring is usually decided by precision needed in a variable. For example if three decimal places of accuracy are needed in
 (
𝑖
𝑖
)the ith variable, total number of alternatives in the variable must be 𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛, which can be set
0.001

equal to 2li and li can be computed as follows:


 (
𝑋
−𝑋
)𝑚𝑎𝑥	𝑚𝑖𝑛
𝑙𝑖 = 𝑙𝑜𝑔2  𝑖	𝑖	
ℇ𝑖

(2.20)


Here, the parameter ℇ𝑖 is desired precision in i-th variable. The total string length of an N-

 (
𝑖=1
)variable solution is then 𝑙 = ∑𝑁   𝑙𝑖 in the population, l-bit strings are created at random (at each

of I positions, there is an equal probability of creating a 0 or 1). Once such string is created, the first Ii bits can be extracted from the complete string and corresponding value of the variable xi can be calculated using equation (2.20) and using the chosen lower and upper limits of variable xI. This process is continued until all N-variables are obtained from complete string. Thus, an l- bit string represents a complete solution specifying all N variables uniquely. Once these values are known, the objective function f(x1,x2, ... xN) can be computed (Chatterjee et al., 1996).
In a GA, each string created either in the initial population or in the subsequent generations must be assigned a fitness value which is related to objective function value. For maximization problem, a string’s fitness can be equal to string’s objective function value. However, for minimization problems, the goal is to find a solution having minimum objective function value.

Thus, the fitness can be calculated as the negative of the objective function so that solutions with similar objective function value get larger fitness. There are number of advantages of using a string representation to code variables. First, this allows a shielding between working of GA and actual problem. The same GA code can be used for different problems by only changing definition of coding a string. This allows a GA to have widespread applicability. Secondly, a GA can exploit the similarities in string coding to make its search faster, this is important in working of a GA (Chatterjee et al., 1996).


II. Reproduction: Reproduction (or selection) is usually the first operator applied to a population. Reproduction selects good strings in a population and forms a mating pool. The essential idea is that above-average strings are picked from the current population and duplicates of them are inserted in the mating pool. The commonly used reproduction operator is the proportionate selection operator, where a string in the current population is selected with probability proportional to the string’s fitness. Thus, the ith string in the population is selected with probability proportional to ℇ𝑖. Since the population size is usually kept fixed in a simple GA, the cumulative probability for all string in the population must be one.
Therefore, the probability for selecting ith string is given in equation (2.21)


𝑃(𝑠𝑖) = 𝑓𝑖⁄ 𝑁
∑𝑖=1


𝑓𝑖

2.21


Where N is the population size and 𝑓𝑖 is the fitness of the ith string.

One way to achieve this proportionate selection is to use a roulette-wheel with the circumference marked for each string proportionate to the string’s fitness (Chatterjee et al., 1996).



III. Crossover: The crossover operator is applied next to the string of the mating pool. In crossover operator, two strings are picked from the mating pool at random and some portion of the strings is exchanged between the strings. In a single-point crossover operator, both strings are cut at an arbitrary place and right-side portion of both strings are swapped among themselves to create two new strings, as illustrated below:
	Parent 1
	0
	0
	0
	0
	0  0
	0
	1
	1
	1
	Child 1

	Parent 2
	1
	1
	1
	1
	1	1
	1
	0
	0
	0
	Child 2



An Illustration of Genetic Crossover (Dhebar and Deb, 2017)

It is interesting to note from the construction that good substrings from either parent string can be combined to form better child string if an appropriate site is chosen. Since the knowledge of an appropriate site is usually not known, a random site is usually chosen (Dhebar & Deb, 2017).
However, it is important to realize that the choice of a random site does not make this search operation random. With a single-point crossover on two l-bit parent strings, the solution search can only find at most different strings in the search space, whereas there are a total of strings in the search space. With a random site, the children strings produce 2i which may or may not have a combination of good substrings from parent strings depending on whether the crossing site falls in the appropriate site or not. But we do not worry about this aspect too much, because if good strings are created by crossover, there will be more copies of them in the next mating pool generated by the reproduction operator. But good strings are not created by crossover; they will not survive beyond next generation, because reproduction will not select bad strings for the next mating pool. In a two-point crossover operator, two random sites are chosen. This idea can be extended to create multi-point crossover operator and the extreme of this extension is known as a

uniform crossover operator. In a uniform crossover for binary strings, each bit from either parent is selected with a probability of 0.5 (Dhebar & Deb, 2017).
The main purpose of the crossover operator is to search the parameter space. Other aspect is that the search need to be performed in a way to preserve the information stored in the parent string maximally, because these parent strings are instances of good strings selected using the reproduction operator. In the single-point crossover operator search is not extensive, but the maximum information is preserved from parent to children. On the other hand, in the uniform crossover, the search is very extensive but minimum information is preserved between parent and children strings. If a crossover probability of Pc is used then 100Pc% strings in the population are used in the crossover operation and 100(1-Pc) % of the population are simply copied to the new population (Dhebar & Deb, 2017).


IV. Mutation: Crossover operator is mainly responsible for the search aspect of genetic algorithms, even though the mutation operator is also used for this purpose sparingly. The mutation operator changes a 1 to a 0 and vice versa with a small mutation probability Pm. An example of mutation operation is as illustrated below:

 (
0
0
0
0
0

0
0
0  
 
1
0
)

An Illustration of mutation operation (Dhebar and Deb, 2017)

In the above example, fourth gene has changed its value, thereby creating a new solution. The need for mutation is to maintain diversity in population. For instance, if in a particular position along the string length all strings in the population have a value 0, and a 1 is needed in that position to obtain optimum or a near-optimum solution, then mutation operator described above

will be able to create a 1 in that position. The inclusion of mutation introduces some probability of changing that 0 into 1. Furthermore, for local improvement of a solution, mutation is useful (Dhebar & Deb, 2017).
After reproduction, crossover, and mutation are applied to whole population, one generation of GA is completed. The reproduction operator selects good strings and the crossover operator recombines good substrings from two good strings together to hopefully form a better substring. The mutation operator alters a string locally to create a better string. Even though none of these claims is guaranteed and / or tested while creating a new population strings, it is expected that if bad strings are created they will be eliminated by the reproduction operator in next generation and if good strings are created, they will be emphasized. To make a faster convergence of a GA to real-world problems, problem-specific operators are often developed and used, but the above three operators portray fundamental operations of a genetic algorithm and facilitate a comparatively easier mathematical treatment (Dhebar & Deb, 2017).
The flow chart for the GA algorithm is shown in Figure 2.6.


[image: ]


Figure 2.6: Flow chart of Binary Coded GA (Dhebar & Deb, 2017)


2.2.12.4 [bookmark: _bookmark35][bookmark: _bookmark35]Hybrid algorithms

Hybrid algorithms try to make use of the merits of different methods to improve the performance of algorithms that are based on a single method. The main aim of proposing an algorithm as a hybrid of two or more methods is to speed up the convergence and to get better quality of solutions than that obtained when applying the individual methods by utilizing their strength and mitigating their weaknesses. A new algorithm integrating Genetic Algorithm (GA) and Artificial Fish Swarm Algorithm (AFSA) can be used to solve an economic dispatch problem. The core of the algorithm is based on GA. AFSA is used to generate new population members in the reproduction phase of the GA. AFSA method is used to accelerate the convergence of the GA by applying the AFSA for all the population members. In other words, GA is used for local search while AFSA is used for global search (Fang et al., 2014).

2.3 [bookmark: _bookmark36][bookmark: _bookmark36]Review of Similar Works

In the literature, a large number of publications have been made on the various aspects of power system distribution network. Quite a number of such publications have been consulted which served as a guide towards achieving the aim and objectives of the research work. Some of these publications are reviewed below.
Bouktir & Slimani, (2005) presented a solution of optimal power flow (OPF) problem of electrical power system using real type genetic algorithm. The objective was to minimize the total fuel cost of generation and environmental pollution caused by fossil based thermal generating units and also maintain an acceptable system performance in terms of limits on generator real and reactive power outputs, bus voltages, shunt capacitors/reactors, transformers tap-setting and power flow of transmission lines. The algorithm was developed in an Object Oriented environment using C++ programming language. The economic power dispatch was applied to an IEEE 30-bus model system (6-generator, 41-line and 20-load). The numerical results have demonstrated the effectiveness of the stochastic search algorithms. Further analyses indicated that this method can be effective for large-scale power systems. However, the rate of convergence of the proposed method can be improved by hybridization with other heuristic algorithm such as AFSA.
Chiang, C.-L. (2005) presented an improved genetic algorithm with multiplier dating (IGA_MU) for power economic dispatch of units with valve-point effects and multiple fuels. The IGA was equipped with an improved evolutionary direction operator and a migration operation in order to efficiently search and actively explore solutions, while the MU was employed to handle the equality and inequality constraints of the PED problem. In order to demonstrate the effectiveness of the proposed approach, it was applied on four test systems comprising 20, 40, 80

and 160 generating units. Additionally, the proposed algorithm was compared with previous methods and the conventional genetic algorithm (CGA) with the MU (CGA_MU). However, the major setback of this approach is its high computational time. This can be improved by hybridizing GA with AFSA.
DosSantosCoelho, L., & Mariani, V. C. (2006) proposed a new approach for solving economic load dispatch problems with valve-point effect. The proposed method combines the DE algorithm with the generator of chaos sequences and sequential quadratic programming (SQP) technique to optimize the performance of economic dispatch problems. The DE with chaos sequences is the global optimizer, and the SQP is used to ﬁne-tune the DE run in a sequential manner. The combined methodology and its variants are validated for two test systems consisting of 13 and 40 thermal units whose incremental fuel cost function takes into account the valve- point loading effects. The proposed combined method outperforms other state-of-the-art algorithms in solving load dispatch problems with the valve-point effect. However, the solution can be made more robust if hybridized with AFSA.
Vlachogiannis & Lee, (2009a) presented an improved coordinated aggregation-based particle swarm optimization (ICA-PSO) algorithm for solving the optimal economic load dispatch (ELD) problem in power systems. In the ICA-PSO algorithm, the number of search intervals for the particles was selected adaptively and the particles searched the decision space with accuracy up to two decimal places resulting in the improved convergence of the process. The ICA-PSO algorithm was tested on a number of power systems, including the systems with 6, 13, 15, and 40 generating units, the island power system of Crete in Greece and the Hellenic bulk power system, and is compared with other state-of-the-art heuristic optimization techniques (HOTs), demonstrating improved performance over them. However, PSO has the possibility of being

trapped in a local optimum. In addition to that, it always has difficulty in finding optimal design parameters and the stochastic characteristic of the final output. Hence the rate of convergence of the algorithm may be reduced when non linear constraints are considered.
Rahmat Azami, (2011) incorporated two approaches into the EDC and DCOPF problems. One of them was a mathematical optimization technique, Lagrangian Relaxation (LR) and the second was a heuristic one, Particle Swarm Optimization. The LR technique was based on the derivatives while the PSO was a non-derivative technique. The DCOPF methodology has been considered for Locational Marginal Pricing (LMP) calculation in LR, which is not available in PSO techniques. On the other hand, PSO technique may be able to provide the optimal solution, LR usually gets stuck at a local optimum in large scale power system and it takes much time in calculating LMP which makes its convergence difficult when large power systems are involved. This limits its application.
Gargeya & Pabba, (2013) presented Economic Load Dispatch of real power generation. The work considers valve point loading effects of the generating units. Two intelligent search methods were considered, namely, genetic algorithm and pattern search methods. Equality constraint was satisfied by penalty approach method. Two typical test cases of 5-generator, and 13-generator were carried out. The effectiveness of the approach can be made more realistic by incorporating no linear constraints such as multiple fuel cost function into the objective function. Azad et al., (2014) proposed an improved binary artificial fish swarm algorithm for 0-1 the multidimensional knapsack problem. The algorithm uses population of points in space to represent the position of fish in school; a point is represented by binary string of 0/1 bits. Each bit of a trial point is generated by copying the corresponding bit from the current point or from some other speciﬁed point, with equal probability. Some randomly chosen bits of a selected point

were occasionally changed from 0 to 1, or 1 to 0, with a user deﬁned probability. The infeasible solutions were made feasible by a decoding algorithm. The comparison with other methods shows that the proposed method gives a competitive performance. HGAFSA could perform better in terms of execution time.
Fang et al., (2014) presented a hybrid real coded genetic algorithm and artificial fish swarm algorithm for short-term optimal hydrothermal scheduling (SHS). RCGA was used for global search while AFSA was used for local search in order to improve the exploitation capability of the algorithm. The water transport delay between connected reservoirs was taken into account. Moreover, new coarse and ﬁne adjustment methods without any penalty factors and extra parameters were proposed to deal with all equality and inequality constraints. The feasibility and effectiveness of the proposed RCGA–AFSA method was tested on two hydrothermal systems and compared with other method, the simulation results obtained by hybrid RCGA–AFSA showed superiority in fuel cost and computation time. However, HGAFSA still showed lower fuel cost and faster convergence rate.
Gupta & Chawala, (2015) presented a new efficient approach to economic load dispatch (ELD) problem with cost functions using curve fitting, ANN and particle swarm optimization. The ELD problem was modeled using multiple fuel cost function typically for coal power plants with varying quality. Curve fitting technique was used to obtain the coefficients of the cost curve. The same data is used for the training of the artificial neural network. The effectiveness of the algorithm was validated by carrying out extensive test on a power system involving eight (8) thermal generating units. The variation in calorific values of the coal used in different generators results in cost curve coefficients change. This effect was incorporated using curve fitting, ANN and PSO approaches. The ELD problem was then optimized. The comparison showed a better

result. However, the effectiveness of the technique can be improved by considering higher order cost functions.
Khoa et al., (2015) proposed a Swarm based Mean-variance mapping optimization (MVMOS) for solving the economic dispatch. The proposed optimization algorithm was the extension of the original single particle mean-variance mapping optimization (MVMO). The novel feature was the special mapping function applied for the mutation based on the mean and variance of n-best population. The MVMOS was investigated on four test power systems, including 3, 13, 20 thermal generating units and large-scale system of 140 units with quadratic cost function and the obtained results were compared with many other known methods in the literature. Test results showed that the method was quite efficient and can be implemented for solving economic dispatch. However, the effectiveness of the technique can be improved by incorporating non linear parameters such as valve point loading.
Sharma et al., (2015) presented Grey Wolf Optimization (GWO) to solve convex economic load dispatch (ELD) problem. Grey Wolf Optimization (GWO) is a new meta-heuristic inspired by grey wolves. The leadership hierarchy and hunting mechanism of the grey wolves was mimicked in GWO. The technique was implemented on two different test systems for solving the ELD with various load demands. The results were compared with other existing techniques. However, the ELD problem was modeled based on the quadratic fuel cost function, which is less effective than the higher order cost function (when non linear constraints parameters are considered).
Aref Jalili et al., (2015) presented a hybrid method based on Firefly Algorithm (FA) and Fuzzy Mechanism (FM) for solving Economic Load Dispatch (ELD) problem by considering the valve point in power system. Nonlinear constraints of generators, such as ramp rate limits, prohibited

operating zone, generation limits, transmission line loss and non-smooth cost functions were all considered. An attempt was made to find out the minimum cost by using FA using the data of six and forty generating units. Results were also presented. Though the problem definition was quite impressive, but the results failed in demonstrating the effectiveness of the method as compared with other similar methods in the literature.
H Kaur et al., (2015) presented a method for solving Economic Load Dispatch problem in order to operate an electric thermal power station within estimated load demand limits. The ELD objective function was formulated within the limits of equality and inequality constrains. The aim is to minimize fuel cost. The simulation results presented were quite good compared to the results so far in literature, but cannot be relied upon in the case of practical scenario simulation as they were based on quadratic cost function. Therefore, the accuracy of the method can be improved by considering other non linear constraints.
Kumar Sharma & Kasniya, (2015) applied Fuzzy Logic in combination with Genetic Algorithm (GA) to solve various power system problems. The computational results revealed that the proposed algorithm had excellent convergence characteristics and was superior to the GA and LIM. However, the work was only based on comparative analysis. Its effectiveness in solving multi-objective ELD problem can be improved.
Wu et al., (2015) presented an Efficient Population Utilization Strategy for Particle Swarm Optimization (EPUSPSO) to solve the ELD problem of power system. The algorithm was tested on three different ELD cases of power system including 3, 13 and 40 IEEE generating units, and the obtained results were compared with those obtained from other algorithms using the same system parameters. The compared results showed that the algorithm was able to find optimal

solution effectively and accurately. However, a quadratic fuel cost function based ELD model was used, but in practical scenarios, fuel cost functions are highly non-linear and can best be represented by higher order cost functions.
Kasarapu & Sri, (2015) solved economic load dispatch problem by Lagrange Multiplier method for a network of 8 bus system with 4 thermal units under competitive electricity market with inclusion of demand response programs using different strategies for peak load reduction with the application of fuzzy logic principles and independent power producers (IPPs). However, the method presented is not suitable for highly non-linear fuel cost functions (which is one of the typical properties of ELD problems). Therefore, the flexibility of the method can be improved.
Subramanian et al., (2015) presented a Novel TANAN’s Algorithm (NTA) for solving convex Economic Load Dispatch (ELD) problems considering transmission line losses. The main objective of NTA was to minimize the total fuel cost of the generating units, subject to limits on generator power output. The NTA was a simple numerical random search approach based on a parabolic TANAN function. The work therefore presented an application of NTA to ELD problems for different IEEE standard test systems. The simulation results showed that the simplicity of the proposed algorithm vary widely with increase in the number of generating units. This limits its application in real ELD problems.
Dewangan et al., (2015) presented lambda iteration method to solve an ELD problem using MATLAB for three and six generating units with and without transmission line losses. However, the method may not be suitable for application when other non linear constraints such as valve point loading and multiple fuel cost are considered.

Achana N, (2015) proposed a solution for unit commitment and economic load dispatch problem using hybrid Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The work showed lower operating cost and execution time when compared to several state-of-the-art techniques. The proposed system was tested on the seven unit Neyveli thermal power station system data. The algorithm was developed and executed using C++ and MATLAB 7.1 software. The work looks promising in addressing ELD problem but its guarantee can be made stronger by incorporating multiple fuel cost function into the proposed ELD model.
Elsayed et al., (2016) proposed a Modified Social Spider Algorithm for solving non-convex Economic Load Dispatch problem (MSSA). In their work, the binary mask based random walk used for generating new solution in the social spider algorithm (SSA) was replaced with mutation process after application of selection process. The performance and efficacy of the proposed MSSA were tested using four IEEE test systems having 6, 40, 80 and 140 generating units. The method proved effective in addressing generation fuel cost.
Pradhan et al., (2017) proposed an oppositional grey wolf optimization algorithm (OGWOA) for resolving the optimal economic load dispatch (ELD) problem. Their approach was based on the two common wolf behaviors namely: the hunting and social behavior. The opposition characteristics of grey wolves was mimicked and integrated into the solution strategy in order to ensure optimality and accelerate the rate of convergence of the conventional GWO algorithm. The performance of the proposed algorithm was demonstrated by applying it to a small, medium and large scale hypothetical test systems comprising of 13, 40 and 160 generating units. The results were further compared with that of the conventional GWO and other similar heuristic algorithm based techniques. Its effectiveness could be enhanced if it is hybridized with Artificial Fish Swarm Algorithm.

However, HGAFSA demonstrated superiority in terms of convergence rate, computational expensiveness and objective function minimization. Despite its effectiveness in solving ELD problems, hybrid heuristic algorithms based technique could perform better especially in the case of large number of generators (since ELD problem involves large number of possible solutions).
The reviewed literature so far covered a wide variety of ELD problem formulations and their respective solutions, the accuracy, efficiency, robustness, and flexibility of the approach presented in these literatures can be improved. It is worth noting that, Practical economic dispatch (ED) problems have highly nonlinear objective function with equality and inequality constraints. Conventional methods such as lambda iteration method and gradient method are not suitable for solving such problems. Heuristic techniques on the other hand (if not robust enough) may fail to provide optimal solution to the ELD problems (especially when the fuel cost function is highly non-linear). In the proposed research work, a more robust method was developed by hybridizing AFSA and BCGA to form a method called “HGAFSA”. Some of the target features of the HGAFSA algorithm are:
· Speed (able to overcome the computational complexity introduced by the sinusoidal component of the fuel cost function);
· Flexibility (able to optimally solve ELD problems with either quadratic or higher ordered cost function); and
· Accuracy (provide accurate results for five standard IEEE test cases [13, 40, 110, 140 and 160 generating units] and 463 generating units obtained by the combination of the five generating units.
Detailed characteristics of the proposed HGAFSA method will be presented in the subsequent parts of the proposed research work.

[bookmark: _bookmark37]CHAPTER THREE METHODOLOGY

3.1 [bookmark: _bookmark38][bookmark: _bookmark38]Introduction

This chapter presents detailed procedure that was used in achieving the set aim and objectives of the proposed research work, some useful findings and a set of pseudo codes describing the algorithm steps that were adopted.

3.2 [bookmark: _bookmark39][bookmark: _bookmark39]Formulation of the Proposed HGAFSA

The proposed Hybrid Binary Coded Genetic Algorithm and Artificial Fish Swarm Algorithm (HGAFSA) are designed based on the available parameter dredging steps present in the conventional GA and AFSA. However, each of the separate algorithms (GA and AFSA) is assumed to be composed of three major steps as described in the following.
1. GA

a. Reproduction;

b. Crossover;

c. Mutation.

2. AFSA

a. Preying;

b. Swarming;

c. Chasing.

The mathematical formulation of these steps has been earlier described in Chapter two of this work.

The proposed HGAFSA is a logical combination of the six (6) steps listed above. It is worthy of noting that, the BCGA uses binary operation on a set of binary codes known as chromosomes which further comprises of genes whereas, the AFSA uses real numbers ranging between zero and one as parameters of artificial fish. As such, a Decoder function and an Encoder function are required to serve as converters from GA to AFSA and vice versa. These functions are intended to decode binary code into real numbers and later encode real numbers into binary respectively.

3.3 [bookmark: _bookmark40][bookmark: _bookmark40]Decoder Function

The decoder function takes in four parameters as inputs and generates a decoded version of the main parameter as output. Here, the main parameter is the chromosome (X), whereas the remaining three parameters are:

i.
ii. iii.

xmin

xmax

Nbits

	Lower boundary of the desired decoded output;

	Higher boundary of the desired decoded output;

 Number of bits per parameter.


The steps involved in decoding a single chromosome can be described using Decoder function as follows:
Algorithm 3.1: The Decoder Function


1. Input: X,

xmin ,

xmax and

Nbits ;


2. Evaluate: N = number of bits in X;



3. Evaluate: p =

N *N	1


 (
bits
)(number of parameters);



4. Evaluate:

q  0.5[1,2,......Nbits ]  (quantization levels);

 Nbits

1

5. Evaluate:

qnorm   q *  qi 

(quantization level normalization);

 i1	


6. Evaluate:

Xdecoded(i)  [q(1) * X ( j 1)


q(2) * X ( j  2)


q(3) * X ( j  3)



...


q(Nbits ) * X ( j  Nbits )]

for i  1: p and

j  (i 1) * Nbits) (decoding the bits forming the ith parameter)



7. Output:
Xdecoded   Xdecoded(1)


Xdecoded(2)


Xdecoded(3)



....


Xdecoded( p)* (xmax  xmin )  xmin





Using the Decoder function, a vector X with p* Nbits elements is decoded into a vector

X decoded



with p elements. As an illustration, consider X= [110110110111011110111011111011], if

xmin



= 0 and

xmax =1, let

Nbits =6. Algorithm 3.1 will yield

X decoded = [0.8571 0.8730 0.4762 0.9365


0.9365]

In the proposed HGAFSA once any of the GA steps is executed, the resulting output/population must be decoded before their respective finesses can be evaluated. Whereas, the resulting output/population from the AFSA steps are directly evaluated using the fitness function without been decoded.

3.4 [bookmark: _bookmark41][bookmark: _bookmark41]Encoder Function

The encoder function was also written to counter the effect of the decoder function presented in Algorithm 3.1. However, a reversed procedure was adopted based on Algorithm 3.1 (moving from step 7 to 1). Here, the decoder function was intended to generate chromosome (X) given its

decoded version Xdecode, xmin, xmax and Nbits. However, the Encoder Function formulation was omitted from this manuscript for brevity.
[image: ]Generally, it can be said that: The Decoder function converts a chromosome into a fish; whereas, the Encoder function converts a fish back to a chromosome. (This can be further illustrated using Figure 3.1).


[bookmark: _bookmark42]Figure 3.1: Illustration of Chromosome-Fish Conversion and vice versa



Furthermore, it is worthy of noting that, both X and

Xdecoded are kept for reference during the



optimization process using the proposed HGAFSA. However, either X or

X decoded

is later


discarded depending on which of GA or AFSA steps (listed above) performs better at a given generation and at a given step in the HGAFSA dredging process. In the proposed HGAFSA, X

represents a chromosome whereas

X decoded represents a fish. At first, the entire population is


stored as chromosomes. However, each chromosome is either left as a chromosome (X) or


transformed into a fish

X decoded depending on  which of the HGAFSA step (GA step or AFSA


step) performs better.

3.5 [bookmark: _bookmark43][bookmark: _bookmark43]Population Update

The proposed HGAFSA is composed of two unique algorithms (GA and AFSA) with totally different parameter dredging procedure. When one of the GA steps is executed on an encoded fish (chromosome), the resulting chromosome might be of poor fitness than it would have had if an AFSA step was directly performed on the fish itself. However, this consequence might be on the reverse side. Therefore, the population must be carefully updated for optimality and improved convergence rate. Algorithm 3.2 further describes the population update procedure.
Algorithm 3.2: Population Updater

1. Input: S  (list of steps to be executed in chronological order); P (combined population of fish and chromosomes)
2. Define:    

3. For k = 1 to popsize

4. For s = 1 to Nsteps

5. If P(k) = fish & S(s)AFSA

6. Evaluate: f = Fobj(P(k))


7. Execute:

P(k)  S(s)  P(k)new


8. Evaluate: fnew= Fobj(P(k)new)

9. If fnew is better than f

10.  (
new
)Store : f

P(k)	 



11.  (
new
)Else

12. Store :  f

13. End


P(k )  

14. Elseif P(k) = fish & S(s)GA

15. Evaluate: f = Fobj(P(k))


16. Execute:

P(k)  Encoder  P(k)Encoded



17. Execute:

P(k)Encoded  S(s)  P(k)Encoded,new


18. Evaluate: fnew= Fobj( P(k)Encoded,new )


19. If fnew is better than f
20.  (
new
)Store : f





 (

P
(
k
)

 

)Encoded,new



21. Else

22. Store :  f

23. End


P(k )  


24. Elseif P(k) = chromosome & S(s)AFSA


25. Execute:

P(k)  Decoder  P(k)Decoded


26. Evaluate: f = Fobj(P(k)Decoded)


27. Execute:

P(k)Decoded  S(s)  P(k)Decoded,new


28. Evaluate: fnew= Fobj( P(k)Decoded,new )


29. If fnew is better than f
30.  (
new
)Store : f





 (

P
(
k
)

 

)Decoded,new



31. Else

32. Store :  f

33. End


P(k )  


34. Elseif P(k) = chromosome & S(s)GA

	35.
	Execute:
	P(k)  Decoder  P(k)Decoded

	36.
	Evaluate:
	f = Fobj(P(k)Decoded)

	
37.
	
Execute:
	P(k)  S(s)  P(k)new

	
38.
	
Execute:
	P(k)new  Decoder  P(k)new,Decode

	
39.
	
	
Evaluate: fnew= Fobj( P(k)new,Decode )

	40.
	
	If fnew is better than f

	
41.
	
	Store : f	P(k)	 
new	new,Decode

	42.
	
	Else

	43.
	
	Store :  f	P(k ) 

	44.
	
	End

	45.
	End
	

	46.
	End
	

	47. End
	
	



48. Sorting: Rearrage the vectors in  (in the order of optimality)


The Flow Chart of the proposed HGAFSA is presented in Figure 3.2
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)[image: ]Figure 3.2: Flow Chart of Proposed Hybrid GA and AFSA (HGAFSA)

3.6 [bookmark: _bookmark44][bookmark: _bookmark44]Model of the ELD Problem

 (
G
) (
N
) (
G
)To solve ELD problem using the proposed HGAFSA, a function is required to convert the random numbers generated by it into electrical power demand scheduled to the set of generating units. Let P be a set of power to be generated by the available generating units forming the ELD problem. Let Pmax be the maximum power allowable for each of the units. Let also Pmin be the minimum power allowable for each of the units. Let NG be the number of generating units. Then:


P  [P1	P2

P3	...

PN 2

PN 1	P ]

(3.1)



 (
G
)Pmax  [Pmax,1

Pmax,2

Pmax,3

...

Pmax,N 2

Pmax,N 1

Pmax,N ]

(3.2)



 (
G
) (
G
) (
G
)Pmin

[Pmin,1

Pmin,2

Pmin,3

...

Pmin,N 2

Pmin,N 1

Pmin,N  ]

(3.3)



 (
G
) (
G
) (
G
)The next important parameter of ELD problem formulation is the total power (PG) to be generated by the generating units to meet both the power demand and the power losses along the network. This can be described using the equality constraint as in equation (3.4).


PG  PD  PL

(3.4)



Where, PD is the total power demand by the consumers; and PL is the total power losses in the


network.

PG can be expressed using equation (3.5).




 (
G
)N
PG   Pi
i


(3.5)


As described earlier, to evaluate the fitness of a population generated by HGAFSA, the population must be decoded into a fish ( X decoded ). However, this fish must be further converted

into real power demand P. To achieve this, let

X decoded be replaced by  having p elements, such


that equation (3.6) holds.


 (
1
)  x

x2	x3


...

xp2

xp1	x 


(3.6)
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p
)An ELD Encoder function is  developed to transform  into an equivalent P. The overall process can be described using Figure 3.3.
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Figure 3.3: Evaluating the Fitness of a Chromosome/Fish



The function

Fobj,ELD is the objective function of ELD problem described in equation (2.12). The


ELD Encoder function is given in Algorithm 3.3.


Algorithm 3.3: ELD Encoder

1.  (
max
min
)Input:  ,p, NG , P   , P	, and PG


2. Create: 

  



3. For g = [1, 2, 3, …,

NG ]


4.	  (Pmax (g)  Pmin (g)) *  / max()
 (

 

) 
5.	
 

6. End

7. Create:    

8. For par = [1, 2, 3, …, p]

9.	For g = [1, 2, 3, …,


NG ]


10. (g)   (g, par)


11.	End

12.	For h = [1, 2, 3, …,


NG ]





13.


 (h) 

N
 (
G
)(PG   Pmin (g)) * 
g	 P




(h)

 NG	

min

  (g) 
 g	


14. End

15. While max(  Pmax )  0



(enforce the upper limit constraint for each generating unit)



16. 16.

  rand(1, NG ).*   rand(1, NG )


17. Re-execute steps 12 to 14

18. End



19. 19.

 
 (

 

) 

 

20. End


21. For s = [1, 2, 3, …, p]

22. Evaluate: Fit(s)  Fobj,ELD ([(s,1)


(s,2)


(s,3)



...


(s, NG 1)


(s, NG )])


23. End

24. Determine:   Fit( )  min( Fit)


25. Assign:

P  [ (,1)

 (,2)

 (,3)

...

 (, NG 1)

 (, NG )]

The proposed ELD encoder has the advantage that no generating unit can generate below its minimum allowable generating limit. However, its generation may exceed the allowable maximum. To prevent this, steps 15 to 18 were added to Algorithm 3.3 to enforce the maximum limit constraint.
However, it can be observed from step 22 of Algorithm 3.3, that the proposed ELD Encoder performs optimization during the encoding process. Therefore, it could be termed as an optimal ELD encoder of order p.
To further increase the performance of the proposed ELD Encoder, the dimension of  can be extended for every given  generated by the proposed HGAFSA. This extension was modeled as in equation 3.7.


ext  [

.* sin(2 * )

.* cos(2 * ) ]

(3.7)



With this extension, a new optimal ELD encoder of order 3*p can be formed by modifying steps 8 and 21 of the former optimal ELD encoder (order p) described earlier. This can be achieved using equation (3.8) and (3.9) respectively.
par = [1, 2, 3, …, 3*p]	(3.8)

s = [1, 2, 3, …, 3*p]	(3.9)

3.7 [bookmark: _bookmark45][bookmark: _bookmark45]The Proposed HGAFSA based Higher Order ELD Algorithm

ELD problem is one of the power system analysis problems with large number of possible solutions. However, such solutions form a set of local optimums. As the number of generating units increases, the possible solutions increase exponentially. As such, an algorithm that can deeply search into the solution domain is required to locate the global optimum solution. In this work, HGAFSA optimization algorithm with high computation capability and fast rate of convergence is developed for complex ELD problem solving. The flow chart for the proposed HGAFSA based higher order ELD problem solver is shown in Figure 3.4.
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[bookmark: _bookmark46]Figure 3 4: HGAFSA based ELD Algorithm

[bookmark: _bookmark47]CHAPTER FOUR RESULTS AND DISCUSSION

4.1 [bookmark: _bookmark48][bookmark: _bookmark48]Introduction

In this chapter, five-test systems are used in simulation and the results are compared with those presented in (Pradhan et al., 2017) and other similar literatures regarding ELD problem solving.

4.2 [bookmark: _bookmark49][bookmark: _bookmark49]Simulation Setup

To demonstrate the effectiveness of the developed HGAFSA for ELD problem solving, six test systems were used. The data of the test systems used for the simulation is provided in Appendix A1-A5. The developed algorithm was programmed in MALAB R2016a environment on a HP 8GB-RAM 2.3GHz Core-I3 Computer running Windows 10.1. Some of the M-Files used are also provided in the Appendix section of this work. A set of suitable parameters used for simulation are provided in Table 4.1. To achieve the desired objective, the best solution generated by HGAFSA is set as starting point if it did not meet the desired goal. This process is repeated as far as the optimum cost is higher than the best cost presented in Pradhan et al., (2017).

[bookmark: _bookmark50]Table 4.1: HGAFSA Simulation Parameter Settings

	S/No.
	Name
	Value

	1
	Population Size
	64

	2
	Number of Parameters
	32

	3
	Visual Distance AFSA
	0.875 to 1

	4
	Crowding Factor AFSA
	0.09 to 0.5

	5
	Step Size AFSA
	0.00125 to 0.1

	6
	Max. Iteration
	100

	7
	Min Cost
	0

	8
	Mutation Rate GA
	0.4 to 0.75

	9
	Selection Probability GA
	0.375 to 0.5

	10
	Optimization Type
	2

	11
	Min GA par
	0

	12
	Max GA par
	1

	13
	Number of Bits GA
	8




4.3 [bookmark: _bookmark51][bookmark: _bookmark51]Test system 1

In order to demonstrate the effectiveness of the proposed HGAFSA algorithm compared to the OGWO algorithm (Pradhan et al., 2017), a thirteen-unit test system with valve point effect is used. The system data including fuel cost coefficients and limiting value of active power of various generators are adopted from (dosSantosCoelho & Mariani, 2006). The power demand, in this case is assumed to be 2520 MW. To judge the superiority of OGWO and HGAFSA methods,
the test results are compared with the results obtained by other algorithms such as Oppositional

Invasive Weed Optimization (OIWO) (Barisal & Prusty, 2015), Oppositional Real Coded Chemical Reaction Optimization (ORCCRO) (Bhattacharjee, Bhattacharya, & Dey, 2014), Biogeography Based Optimization (BBO) (Bhattacharya & Chattopadhyay, 2010), hybrid Differential Evolution based BBO (DE/BBO) (Bhattacharya & Chattopadhyay, 2010) and Improved Coordinated Aggregation based PSO (ICA-PSO) (Vlachogiannis & Lee, 2009b) available in the literature.
The comparative results of active power generation and fuel cost using the OGWO and HGAFSA methods along with other methods are given in Table 4.2. The results show that the HGAFSA based approach performed better than all other approaches presented in this work. Figure 4.1a shows the HGAFSA based optimization curve. It may be observed from Figure 4.1a that the algorithm converges at the thirteenth generation to a cost of $24,141.2687/h. This resulted in an annual savings of $3,253,957.
Figure 4.1b presents the cumulative power generated by the units. In economic load dispatch (ELD), power generated by each unit must lie within its maximum and the minimum allowable power output (Upper and Lower Limits). Therefore, the power allocations must lie within this limit. It is clear that, the optimum power allocated to each unit (Pi) lie within its limits. Finally, the cost functions of the various generating units influence the optimum power allocated to the units and thus, defines the pattern of the ‘Optimum Pi’ curves for each of the five-test systems in this work. In general, the peak of the cumulative power curves can be described as follows.
I. Optimum Pi Curve: - Defines the total power generated (Demand + Losses) by the system of generating units;
II. Upper Limit Pmax Curve: - Defines the maximum power that can be generated by the system of generating units;

III. Lower Limit Pmin Curve: - Defines the minimum power generated by the system of generating units.


In the case of Figure 4.1b,

P peak  2560  4 , P peak  550 , and Ppeak  2960

i	min	max


Table 4.2: Comparison of Results for 13-Units System
	S/No.
	HGAFSA
	OGWO
	GWO
	OIWO
	SDE
	ORCCRO

	1
	628.320
	628.294
	628.1678
	628.3185
	628.32
	628.32

	2
	299.200
	299.1803
	298.9229
	299.1989
	299.2
	299.2

	3
	299.300
	297.5041
	298.2269
	299.1991
	299.2
	299.2

	4
	159.730
	159.7284
	159.7232
	159.7331
	159.73
	159.73

	5
	159.730
	159.7325
	159.721
	159.7331
	159.73
	159.73

	6
	159.730
	159.7295
	159.727
	159.7331
	159.73
	159.73

	7
	159.730
	159.7334
	159.7173
	159.733
	159.73
	159.73

	8
	159.730
	159.7323
	159.6793
	159.7331
	159.73
	159.73

	9
	159.730
	159.7327
	159.6673
	159.733
	77.4
	77.4

	10
	77.394
	77.3963
	77.3971
	77.3953
	113.12
	112.14

	11
	113.307
	114.7487
	114.6051
	113.1079
	92.4
	92.4

	12
	92.1300
	92.3974
	92.3886
	92.3594
	92.4
	92.4

	13
	92.2300
	92.378
	92.355
	92.3911
	92.4
	92.4

	Fuel Cost $/h
	24,141.2687
	24,512.725
	24,514.477
	24514.83
	24,514.9
	24,513.91

	Power Loss MW
	40.2686
	40.2874
	40.2983
	40.3686
	40.43
	39.43
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[bookmark: _bookmark52]Figure 4.1a: 13-Units: (a) Optimization Curve






3000


HGAFSA Optimal Power Allocation



 (
0ptimum
 
P
1
Upper
 
Limit
 
P
 
max
 
 
 
Lower
 
Limit
 
P
 
min
) (
Cumulative
 
Power
 
Generated
 
(MW)
)2500


2000


1500


1000


500


0
0	2	4	6	8	10	12	14
Generating Unit


Figure 4.1b: Cumulative Power Generated


4.4 [bookmark: _bookmark53][bookmark: _bookmark53]Test system 2

To compare the effectiveness of the OGWO (Pradhan et al., 2017) and HGAFSA approaches, a medium size ELD problem having 40 generating units with valve-point and multiple fuel effects are used. The input data for 40 generating Units system is taken from (Srinivasa Reddy & Vaisakh, 2013). The total power demand is taken as 10,500 MW. The real power generation output and the fuel cost obtained for 40 unit systems using various intelligent techniques like HGAFSA, GWO, OGWO (Pradhan et al., 2017), OIWO (Barisal & Prusty, 2015), Shuffled Differential Evolution (SDE) (Srinivasa Reddy & Vaisakh, 2013), ORCCRO (Bhattacharjee et al., 2014), GAAPI (Ciornei & Kyriakides, 2012), Quasi-Oppositional Teaching-Learning Based Optimization (QOTLBO) (Roy & Mandal, 2014) and Krill Herd Algorithm (KHA) (Roy & Mandal, 2014) are given in Table 4.3. The results show that the HGAFSA based approach

performed better than all other approaches presented in this work. Figure 4.2a shows the HGAFSA based optimization curve. It can be observed from Figure 4.2a that the algorithm converges at the fifty-first generation to a cost of $136,396.9727/h. This resulted in an annual savings of $382,350. Furthermore, Figure 4.2b shows that all generators satisfy their inequality constraint.


Table 4.3: Comparison of Results for 40-Units System
	S/No.
	HGAFSA
	OGWO
	GWO
	OIWO
	SDE
	ORCCRO
	GAAPI
	QOTLBO
	KHA

	1
	113.96
	114
	114
	113.9908
	110.06
	111.68
	114
	114
	114

	2
	113.69
	114
	114
	114
	112.41
	112.16
	114
	114
	114

	3
	120
	120
	120
	119.9977
	120
	119.98
	120
	107.8221
	120

	4
	179.74
	183.5725
	181.049
	182.5131
	188.72
	182.18
	190
	190
	190

	5
	96.975
	87.8151
	87.8351
	88.4227
	85.91
	87.28
	97
	88.3702
	88.5944

	6
	140
	140
	140
	140
	140
	139.85
	140
	140
	105.5166

	7
	300
	300
	300
	299.9999
	250.19
	298.15
	300
	300
	300

	8
	284.8
	300
	300
	292.0654
	290.68
	286.89
	300
	300
	300

	9
	289.02
	300
	300
	299.8817
	300
	293.38
	300
	300
	300

	10
	279.65
	279.7201
	279.9786
	279.7073
	282.01
	279.34
	205.25
	211.2071
	280.6777

	11
	168.81
	243.617
	243.6274
	168.8149
	180.82
	162.35
	226.3
	317.2766
	243.5399

	12
	94
	94.1781
	94.1436
	94
	168.74
	94.12
	204.72
	163.7603
	168.8017

	13
	484.04
	484.27
	484.4562
	484.0758
	469.96
	486.44
	346.48
	481.5709
	484.1198

	14
	484.05
	484.3324
	484.2306
	484.0477
	484.17
	487.02
	434.32
	480.5462
	484.1662

	15
	484.04
	484.0484
	484.2463
	484.0396
	487.73
	483.39
	431.34
	483.7683
	485.2375

	16
	484.08
	484.0791
	484.0333
	484.0886
	482.3
	484.51
	440.22
	480.2998
	485.0698

	17
	489.28
	489.2147
	489.6295
	489.2813
	499.64
	494.22
	500
	489.2488
	489.4539

	18
	489.3
	489.2607
	489.3228
	489.2966
	411.32
	489.48
	500
	489.5524
	489.3035

	19
	511.32
	511.3341
	511.4616
	511.3219
	510.47
	512.2
	550
	512.5482
	510.7127

	20
	511.33
	511.4991
	511.4932
	511.335
	542.04
	513.13
	550
	514.2914
	511.304

	21
	549.94
	523.476
	523.4767
	549.9412
	544.81
	543.85
	550
	527.0877
	524.4678

	22
	549.94
	546.6445
	547.6868
	549.9999
	550
	548
	550
	530.1025
	535.5799

	23
	523.3
	523.3857
	523.3738
	523.2804
	550
	521.21
	550
	524.2912
	523.3795

	24
	523.32
	523.3344
	523.135
	523.3213
	528.16
	525.01
	550
	524.6512
	523.15527

	25
	523.27
	523.407
	523.3472
	523.5804
	524.16
	529.84
	550
	525.0586
	524.1916

	26
	523.28
	523.302
	523.3578
	523.5847
	539.1
	540.04
	550
	524.4654
	523.5453

	27
	10.013
	10.0076
	10.0678
	10.0086
	10
	12.59
	11.44
	10.8929
	10.1245

	28
	10.007
	10.0104
	10.6337
	10.0068
	10.37
	10.06
	11.56
	17.4312
	10.1815

	29
	10.012
	10.0622
	10.5181
	10.0123
	10
	10.79
	11.42
	12.7839
	10.0229

	30
	96.966
	87.8011
	87.8029
	87.8664
	96.1
	89.7
	97
	88.8119
	87.8154

	31
	190
	190
	190
	190
	185.33
	189.59
	190
	190
	190

	32
	190
	190
	190
	189.9983
	189.54
	189.96
	190
	190
	190

	33
	190
	190
	190
	190
	189.96
	187.61
	190
	190
	190

	34
	199.99
	200
	200
	199.994
	199.9
	198.91
	200
	200
	200

	35
	200
	200
	200
	200
	196.25
	199.98
	200
	168.0873
	164.9199

	36
	169.2
	164.8986
	164.8334
	164.8283
	185.85
	165.68
	200
	165.5072
	164.9787

	37
	110
	110
	110
	110
	109.72
	109.98
	110
	110
	110

	38
	109.99
	110
	110
	109.994
	110
	109.82
	110
	110
	110

	39
	110
	110
	110
	110
	95.71
	109.88
	110
	110
	110

	40
	550
	511.8527
	511.5471
	550
	532.43
	548.5
	550
	511.5313
	512.06775

	Fuel Cost
	136396.9727
	136440.62
	136446.85
	136452.7
	138157
	136855.19
	139865
	137329.86
	136670
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Figure 4.2a: 40-units: (a) Optimization Curve
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Figure 4.2b: Cumulative Power Generated

4.5 Test system 3

This system comprises 110 generators with quadratic cost characteristic. The input system data were obtained from (Orero, 1997). The load demand is considered as 15, 000MW.The minimum fuel costs and their corresponding generation levels obtained by proposed HGAFSA and other method are provided in Table 4.4. The minimum fuel cost obtained for this system by all the methods are also provided in Table 4.4. From Tables 4.4, it is clear that the proposed method provides cheapest generation schedule of power generation. The results show that the HGAFSA based approach outperformed all other approaches presented in the literature so far. Figure 4.3a shows the HGAFSA based optimization curve. It may be observed from Figure 4.3a that the algorithm was truncated at the hundredth generation and at a cost of $197,988.892/h. This resulted in an annual savings of $2,135.69. The saving in cost was less because of the narrow margins for some of the generating units especially units 1 to 9 and the high cost of generation. Furthermore, Figure 4.3b shows that all generators satisfy their inequality constraints.
[bookmark: _bookmark56]Table 4.4: Comparison of Results for 110-Units System
	S/No.
	HGAFSA
	OIWO
	
	HGAFSA
	OIWO
	
	HGAFSA
	OIWO

	1
	2.4
	2.4
	38
	69.9975178
	69.981
	75
	89.99982
	89.999

	2
	2.4004
	2.4004
	39
	99.9999501
	99.994
	76
	49.999
	49.999

	3
	2.4026
	2.4026
	40
	120
	120
	77
	160
	160.01

	4
	2.4
	2.4
	41
	157.18324
	156.8
	78
	295.7606
	291.36

	5
	2.4
	2.4
	42
	220
	220
	79
	175.0589
	177

	6
	4.0011
	4.0011
	43
	440
	440
	80
	98.0084
	97.753

	7
	4
	4
	44
	560
	560
	81
	10.001
	10.001

	8
	4
	4
	45
	660
	660
	82
	12.0124
	12.305

	9
	4
	4
	46
	616.436395
	619.53
	83
	20.0153
	20.042

	10
	64.3953156
	63.055
	47
	5.40003807
	5.4004
	84
	199.9893
	199.99

	11
	62.16223
	59.275
	48
	5.4
	5.4
	85
	324.9917
	324.51

	12
	36.2917819
	35.658
	49
	8.4015
	8.4015
	86
	439.998
	439.99

	13
	56.6260119
	57.438
	50
	8.4
	8.4
	87
	14.42951
	18.867

	14
	25
	25
	51
	8.4
	8.4
	88
	24.32679
	23.334

	15
	25
	25
	52
	12
	12
	89
	82.44312
	84.403

	16
	25
	25
	53
	12
	12
	90
	89.25027
	91.9

	17
	155
	155
	54
	12.001
	12.001
	91
	57.61189
	58.29

	18
	155
	155
	55
	12
	12
	92
	99.99727
	98.071

	19
	155
	155
	56
	25.2
	25.2
	93
	440
	440

	20
	155
	155
	57
	25.2
	25.2
	94
	499.9977
	499.97

	21
	68.9
	68.9
	58
	35
	35
	95
	600
	600



	22
	68.9
	68.9
	59
	35.0004463
	35
	96
	471.479
	469.27

	23
	68.9
	68.9
	60
	45.001
	45.001
	97
	3.6
	3.6

	24
	350
	350
	61
	45.001
	45.001
	98
	3.6
	3.6

	25
	400
	400
	62
	45
	45
	99
	4.4
	4.4

	26
	400
	400
	63
	184.998222
	185
	100
	4.400235
	4.4005

	27
	500
	500
	64
	185
	184.99
	101
	10.00088
	10.008

	28
	500
	500
	65
	185
	185
	102
	10.001
	10.001

	29
	200
	199.99
	66
	184.993084
	185
	103
	20.005
	20.005

	30
	100
	100
	67
	70
	70
	104
	20.00009
	20.005

	31
	10.0005576
	10.001
	68
	70
	70
	105
	40
	40

	32
	19.9992817
	19.99
	69
	70.001
	70.001
	106
	40.001
	40.002

	33
	79.9983153
	79.485
	70
	359.998903
	360
	107
	50
	50

	34
	250
	250
	71
	400
	400
	108
	30
	30

	35
	360
	360
	72
	400
	400
	109
	40
	40

	36
	400
	399.99
	73
	104.96292
	107.83
	110
	20
	20

	
37
	
39.999
	
39.999
	
74
	
191.49755
	
188.81
	Fuel Cost
$/h
	
197,988.892
	
197,989.1358
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[bookmark: _bookmark57]Figure 4.3a: 110-Units: (a) Optimization Curve
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Figure 4.3b: Cumulative Power Generated





4.6 [bookmark: _bookmark58][bookmark: _bookmark58]Test system 4

In this case study, a complicated 140-unit test system is considered to verify the effectiveness of the proposed HGAFSA method. The non-linear constraints like valve-point effect prohibited operating zone and ramp rate limits are considered in this case. The load demand is assumed to be 49,342MW. In order to validate the superiority of the proposed methods, the results obtained from the HGAFSA and OGWO are compared with those of GWO, SDE and OIWA reported in the literature. The lowest cost for each of the 50 different trials using HGAFSA, OGWO, GWO, SDE (Srinivasa Reddy & Vaisakh, 2013), and OIWO (Barisal & Prusty, 2015) methods are illustrated in Table 4.5 from which HGAFSA method produces lowest cost compared to the OGWO and the other methods. It clearly suggests that though the performances of both HGAFSA and OGWO are satisfactory but HGAFSA is significantly better than OGWO. Figure

4.4a shows the HGAFSA based optimization curve. It may be observed from Figure 4.4a that the algorithm converges at the sixty-sixth generation to a cost of $1,558,619.094/h. This resulted in an annual savings of $2,128,680. Furthermore, Figure 4.4b shows that all generators satisfy their inequality constraints.
[bookmark: _bookmark59]Table 4.5: Comparison of Results for 140-Units System
	S/No.
	HGAFSA
	OGWO
	GWO
	
	HGAFSA
	OGWO
	GWO
	
	HGAFSA
	OGWO
	GWO

	1
	113.5
	114.5
	119
	48
	250
	250
	250
	95
	978
	978
	978

	2
	189
	189
	189
	49
	250
	250
	250
	96
	682
	682
	682

	3
	190
	190
	190
	50
	250
	250
	250
	97
	720
	720
	720

	4
	190
	190
	190
	51
	165
	165
	165
	98
	718
	718
	718

	
5
	
168.54
	
168.54
	168.5
4
	
52
	
165
	
165
	
165
	
99
	
720
	
720
	
720

	6
	190
	190
	190
	53
	165
	165
	165
	100
	964
	964
	964

	7
	490
	490
	490
	54
	165
	165
	165
	101
	958
	958
	958

	8
	490
	490
	490
	55
	180
	180
	180
	102
	1007
	1007
	1007

	9
	496
	496
	496
	56
	180
	180
	180
	103
	1006
	1006
	1006

	10
	496
	496
	496
	57
	103
	103
	103
	104
	1013
	1013
	1013

	11
	496
	496
	496
	58
	198
	198
	198
	105
	1020
	1020
	1020

	12
	496
	496
	496
	59
	312
	312
	312
	106
	954
	954
	954

	13
	506
	506
	506
	60
	277.85
	280.85
	282.89
	107
	952
	952
	952

	14
	509
	509
	509
	61
	163
	163
	163
	108
	1006
	1006
	1006

	15
	506
	506
	506
	62
	95
	95
	95
	109
	1013
	1013
	1013

	16
	505
	505
	505
	63
	159.42
	160
	160.88
	110
	1021
	1021
	1021

	17
	506
	506
	506
	64
	160
	160
	160
	111
	1015
	1015
	1015

	18
	506
	506
	506
	65
	490
	490
	490
	112
	94
	94
	94

	19
	505
	505
	505
	66
	196
	196
	196.26
	113
	94
	94
	94

	20
	505
	505
	505
	67
	490
	490
	490
	114
	94
	94
	94

	21
	505
	505
	505
	68
	489
	490
	489.6
	115
	244
	244
	244

	22
	505
	505
	505
	69
	130
	130
	130
	116
	244
	244
	244

	23
	505
	505
	505
	70
	234.71
	234.71
	234.7
	117
	244
	244
	244

	24
	505
	505
	505
	71
	137
	137
	137
	118
	95
	95
	95

	25
	537
	537
	537
	72
	324.5
	325.5
	325.82
	119
	95
	95
	95

	26
	537
	537
	537
	73
	195
	195
	195
	120
	116
	116
	116

	27
	549
	549
	549
	74
	175.39
	175.39
	175.39
	121
	175
	175
	175

	28
	549
	549
	549
	75
	175
	175
	175
	122
	2
	2
	2

	29
	501
	501
	501
	76
	175.99
	175.99
	175.99
	123
	4
	4
	4

	30
	501
	501
	501
	77
	175.41
	175.41
	175.41
	124
	15
	15
	15

	31
	506
	506
	506
	78
	330
	330
	330
	125
	9
	9
	9

	32
	506
	506
	506
	79
	531
	531
	531
	126
	12
	12
	12

	33
	506
	506
	506
	80
	531
	531
	531
	127
	10
	10
	10

	34
	506
	506
	506
	81
	395.1353
	398.38
	366.4
	128
	112
	112
	112

	35
	500
	500
	500
	82
	56
	56
	56
	129
	4
	4
	4

	36
	500
	500
	500
	83
	115
	115
	115
	130
	5
	5
	5

	37
	241
	241
	241
	84
	115
	115
	115
	131
	5
	5
	5

	38
	241
	241
	241
	85
	115
	115
	115
	132
	50
	50
	50

	39
	774
	774
	774
	86
	207
	207
	207
	133
	5
	5
	5

	40
	769
	769
	769
	87
	207
	207
	207
	134
	42
	42
	42

	41
	3
	3
	3
	88
	175
	175
	175
	135
	42
	42
	42

	42
	3
	3
	3
	89
	175
	175
	175
	136
	41
	41
	41

	43
	250
	250
	250
	90
	175
	175
	175
	137
	17
	17
	17

	44
	246.2765
	246.39
	250
	91
	175
	175
	175
	138
	15.35825
	17
	17



	45
	250
	250
	250
	92
	580
	580
	580
	139
	7
	7
	7

	46
	250
	250
	250
	93
	645
	645
	645
	140
	26
	26
	26.13
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[bookmark: _bookmark60]Figure 4.4a: 140-Units: (a) Optimization Curve
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Figure 4.4b: Cumulative Power Generated

[bookmark: _bookmark61]4.7 Test system 5


In this case, a 160-unit test system with non-smooth valve point and multiple fuel effects cost function are solved by the proposed GWO and HGAFSA methods. Transmission loss is ignored to verify the feasibility and effectiveness of the proposed algorithms for solving large scale ELD based power system problem. For this 160-units system, the 10-units multiple fuel system data taken from (Chiang, 2005) are duplicated and the demand is multiplied by 16 (i.e. load demand is taken as 43,200 MW). Table 4.6 presents the best cost and generation achieved by the different algorithms for the 160-unit system while satisfying the constraints. From Table 4.6, it can be inferred that the total minimum production cost obtained using HGAFSA technique is comparatively smaller with respect to other algorithms already mentioned in this work. Figure 4.5a shows the HGAFSA based optimization curve. It may be observed from Figure 4.5a that the algorithm converges at the eighth generation to a cost of $9,612.8295/h. This resulted in an

annual savings of $1,158,803.46. Furthermore, Figure 4.5b shows that all generators satisfy their inequality constraints.
[bookmark: _bookmark62]Table 4.6: Comparison of Results for 160-Units System
	S/No.
	HGAFSA
	OGWO
	GWO
	
	HGAFSA
	OGWO
	GWO
	
	HGAFSA
	OGWO
	GWO

	1
	214.486
	211.0548
	224.4316
	55
	269.1426
	207.4412
	265.2612
	109
	438.9043
	402.6279
	430.8317

	2
	211.7117
	208.8475
	200.24
	56
	240.9831
	254.7693
	257.0533
	110
	275.8686
	272.9789
	260.2696

	3
	274.6078
	335.1164
	355.8632
	57
	290.0985
	294.1646
	277.1283
	111
	214.486
	199.7646
	217.9593

	4
	241.2519
	243.6651
	228.6577
	58
	240.8488
	245.6809
	235.9306
	112
	211.9596
	204.8838
	199.0124

	5
	269.1424
	266.496
	305.8538
	59
	439.0723
	420.2064
	394.7028
	113
	274.6078
	351.507
	357.91

	6
	240.58
	237.7474
	249.9548
	60
	275.8686
	270.5752
	278.4325
	114
	241.2519
	249.6972
	251.1044

	7
	290.0985
	282.9036
	309.7896
	61
	214.486
	198.8766
	240.6965
	115
	272.739
	266.0942
	267.0206

	8
	241.2519
	239.4979
	218.8214
	62
	211.4642
	212.9224
	213.3251
	116
	241.1175
	240.0271
	252.1589

	9
	439.0937
	408.8918
	335.8343
	63
	273.5996
	348.4807
	341.0975
	117
	290.0985
	290.287
	290.7761

	10
	275.8686
	265.7794
	270.5537
	64
	240.9831
	259.8417
	248.8005
	118
	241.2519
	242.3206
	233.9515

	11
	215.513
	225.2013
	187.6995
	65
	272.7397
	292.9373
	232.9769
	119
	439.0246
	412.5941
	329.9101

	12
	211.7117
	217.9922
	195.5662
	66
	241.2519
	221.2448
	245.9912
	120
	275.8686
	242.8243
	300.1967

	13
	273.5996
	336.6158
	353.7443
	67
	292.4695
	286.6376
	310.0164
	121
	215.513
	211.0182
	237.5402

	14
	241.3863
	232.3276
	241.0525
	68
	241.5206
	242.6468
	232.721
	122
	211.7117
	210.7714
	207.3365

	15
	269.1425
	259.6177
	273.3024
	69
	439.0756
	348.3301
	353.3462
	123
	274.6078
	345.7508
	337.0684

	16
	240.9831
	237.6971
	228.1355
	70
	275.8686
	288.0821
	281.0286
	124
	241.1175
	227.1918
	210.5269

	17
	292.4695
	265.8324
	277.3736
	71
	214.486
	227.9132
	219.8481
	125
	269.1424
	273.9219
	241.1325

	18
	240.9831
	236.9454
	224.3982
	72
	211.9593
	215.0451
	220.3933
	126
	241.5206
	250.0678
	246.6614

	19
	439.2471
	414.7889
	404.3422
	73
	273.5996
	339.1038
	343.6976
	127
	290.0985
	258.3325
	293.9444

	20
	275.8686
	272.9817
	314.3855
	74
	241.3862
	244.8685
	250.5153
	128
	240.9831
	243.0127
	245.9554

	21
	214.486
	222.199
	205.5031
	75
	269.1392
	280.3173
	273.4252
	129
	439.185
	382.982
	431.4487

	22
	211.9593
	204.6515
	200.7397
	76
	240.58
	231.957
	217.8772
	130
	275.8686
	296.9508
	248.3855

	23
	274.6078
	333.0013
	374.811
	77
	292.4695
	286.6036
	305.1259
	131
	214.486
	200.3463
	199.4532

	24
	241.2519
	237.4739
	234.0215
	78
	241.7894
	225.9269
	243.7327
	132
	211.7117
	214.629
	217.2444

	25
	272.7398
	304.7814
	284.8751
	79
	439.0763
	382.9488
	353.5211
	133
	274.6148
	334.6046
	342.2486

	26
	240.7144
	245.5394
	221.658
	80
	275.8686
	265.3158
	271.8637
	134
	241.5206
	234.0886
	229.6668

	27
	292.4751
	265.8384
	253.2492
	81
	215.513
	223.9674
	223.3807
	135
	269.1468
	286.6132
	250.7479

	28
	241.2519
	237.482
	223.1936
	82
	212.2069
	200.5557
	191.4945
	136
	241.7894
	247.7709
	236.0422

	29
	439.013
	381.7295
	421.8011
	83
	273.5996
	334.5932
	349.8148
	137
	290.0985
	290.5292
	305.7284

	30
	272.7219
	267.3033
	280.1477
	84
	241.1175
	246.8674
	234.8348
	138
	241.5206
	229.8027
	230.9169

	31
	214.486
	223.8357
	175.7028
	85
	269.1424
	274.2033
	275.2954
	139
	439.1252
	391.0035
	430.433

	32
	211.9593
	214.3587
	203.4868
	86
	241.1175
	249.3916
	208.8313
	140
	275.8686
	270.6119
	257.5185

	33
	274.6078
	334.3914
	348.5865
	87
	292.4695
	297.4366
	282.9046
	141
	214.486
	212.7407
	228.4485

	34
	241.5206
	247.1993
	219.6817
	88
	240.58
	240.7596
	255.2069
	142
	211.2166
	226.1497
	184.2037

	35
	269.1425
	250.1068
	283.914
	89
	439.0426
	340.9873
	409.1432
	143
	274.6078
	335.9897
	370.6009

	36
	241.5206
	229.7748
	244.5662
	90
	275.8686
	291.238
	269.0939
	144
	240.9831
	245.3932
	219.2088

	37
	292.4695
	265.8045
	313.7701
	91
	214.486
	212.3306
	192.5265
	145
	269.1424
	261.9323
	263.8981

	38
	240.7144
	243.4346
	236.54
	92
	210.969
	210.493
	201.0805
	146
	241.9237
	244.4414
	235.3311

	39
	439.0891
	413.3884
	340.5099
	93
	273.5995
	337.77
	350.8514
	147
	290.0985
	294.0252
	300.9854

	40
	275.8686
	277.7058
	333.2419
	94
	242.0581
	236.8209
	258.9069
	148
	241.3863
	235.734
	242.2109

	41
	214.486
	202.7653
	230.1267
	95
	269.1424
	261.4802
	290.5386
	149
	439.0389
	390.4426
	387.3228

	42
	211.7117
	228.5107
	209.9439
	96
	240.58
	235.3425
	226.8687
	150
	275.8686
	253.1512
	267.7898

	43
	273.5996
	352.7008
	341.696
	97
	292.4695
	278.8739
	299.7902
	151
	214.486
	193.0014
	184.8211

	44
	241.2519
	227.3366
	233.436
	98
	241.3862
	237.8441
	223.7707
	152
	212.2078
	222.8983
	212.4468

	45
	269.1424
	272.1149
	299.6092
	99
	439.1089
	420.0762
	366.8371
	153
	274.6078
	355.9969
	376.6391

	46
	240.7144
	241.8475
	263.4945
	100
	275.8684
	268.9686
	288.8294
	154
	240.58
	242.056
	248.5759

	47
	287.7275
	266.7677
	243.0096
	101
	214.486
	224.3774
	227.0085
	155
	269.1424
	277.6386
	278.2433

	48
	241.1175
	230.7801
	212.4306
	102
	211.9593
	209.2698
	210.8885
	156
	241.2519
	246.0075
	223.6107

	49
	439.0932
	423.1378
	362.973
	103
	273.5996
	337.6392
	363.4203
	157
	292.4695
	318.3527
	264.0864

	50
	275.8686
	254.0386
	303.2805
	104
	241.5206
	230.3857
	222.0259
	158
	241.1175
	241.0144
	234.1904

	51
	215.513
	218.3367
	181.5271
	105
	269.1424
	269.3592
	234.4937
	159
	439.097
	341.9573
	390.9912



	52
	211.2166
	211.9849
	211.2522
	106
	240.7144
	235.2646
	232.5588
	160
	275.8686
	261.077
	286.3951

	53
	274.6078
	337.9485
	364.7108
	107
	290.0985
	274.0838
	282.2891
	Fuel Cost
$/h
	9,612.8295
	9,745.113
	9,813.377

	54
	241.7894
	238.8923
	234.0012
	108
	242.4612
	244.0134
	236.214
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[bookmark: _bookmark63]Figure 4.5a: 160-Units: (a) Optimization Curve
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Figure 4.5b: Cumulative Power Generated



In General, the performance of HGAFSA over the best algorithms presented in literature so far and listed in this work can be further summarized as follows. The best cost so far for all the systems in Table 4.7 are obtained by OGWO except for the 110-Units system which was obtained using OIWO. In all the simulated cases, HGAFSA has demonstrated superiority and has yielded a considerable huge amount of annual savings in fuel cost. Figure 4.6 also show the bar charts of annual savings in fuel cost.

[bookmark: _bookmark64]Table 4.7: Summary of Results for the Comparison of HGAFSA and OGWO/OIWO
	

System
	
Number of Units
	
HGAFSA

($)
	OGWO

Best Cost so far ($)
	

Annual Savings ($)
	

Total Power
	OGWO/OIWO

Iteration Time (s)
	HGAFSA

Iteration Time (s)

	1
	13
	24,141.2687
	24,512.725
	3,253,957.2
	2,560.3686
	5.16
	5.023

	2
	40
	136,396.9727
	136,440.62
	382,350.35
	11,457.297
	10.23
	10.113

	3
	110
	197,988.892
	197,989.1358
	2,135.688
	15,000
	31
	104.3

	4
	140
	1,558,619.094
	1,559,710
	9,556,340.9
	49,342
	41.77
	41.123

	5
	160
	9,612.8295
	9,745.113
	1,158,803.5
	43,200
	16.32
	10.234




[image: ]



[bookmark: _bookmark65]Figure 4.6: Annual Savings in Fuel Cost for Systems 1 to 5

[bookmark: _bookmark66]CHAPTER FIVE CONCLUSION AND RECOMMENDATION

[bookmark: _bookmark67]Introduction

This chapter presents the general conclusion drawn from the simulation carried out in this work, and itemize a set of recommendations that may be useful in future works regarding ELD problem and its solution strategy.

5.1 [bookmark: _bookmark68][bookmark: _bookmark68]Conclusion

In this work, a hybrid Genetic Algorithm and Artificial Fish Swarm Algorithm namely HGAFSA capable of solving a higher order economic load dispatch (ELD) has been developed and used to solve several higher order ELD problems including 13, 40, 110, 140 and 160-generating-Units system. An ELD Encoder algorithm that can be linked to any heuristic algorithm to solve ELD problem has been developed and linked to the developed HGAFSA to form a HGAFSA based ELD algorithm (HGAFSAELDA) that can minimize any ELD cost function lower than every algorithm available in the literature so far. The performance of the developed HGAFSAELDA has been demonstrated over five standard IEEE test systems. Reduction in fuel cost of 1.53%, 0.03%, 0.07%, 0.00012% and 1.37% were recorded on the 13, 40, 110, 140 and 160- generating- units. Annual savings in fuel cost of $3.254e+06, $3.8235e+05, $2135.7, $9.5563e+06, and
$1.1588e+06 for the 13, 40, 110, 140, and 160-generating-units respectively were achieved over the existing best costs presented in the (Pradhan et al., 2017). It can be generalized that this developed HGAFSAELDA can go a long way in providing solution to any given ELD problem. The simulation environment used was MATLAB R2016a Software running on a Windows 10.1 based 8GB-RAM, 2.3GHz-Core-I3 HP computer.

5.2 [bookmark: _bookmark69][bookmark: _bookmark69]Significant Contributions

The major contributions of this work to the existing body of knowledge are summarized in the following.
1. A hybrid Genetic Algorithm and Artificial Fish Swarm Algorithm namely HGAFSA capable of solving a higher order economic load dispatch (ELD) have been developed and used to solve several higher order ELD problems including 13, 40, 110, 140 and 160- generating-Units system.
2. An ELD Encoder algorithm that can be linked to any heuristic algorithm to solve ELD problem has been developed and linked to the developed HGAFSA to form a HGAFSA based ELD algorithm (HGAFSAELDA) that can minimize any ELD cost function lower than every algorithm available in the literature of this work.
3. The performance of the developed HGAFSAELDA has been demonstrated over five ELD systems. Reduction in fuel cost of 1.53%, 0.03%, 0.07%, 0.00012% and 1.37% were recorded on the 13, 40, 110, 140 and 160- generating- units. An annual savings in fuel cost of $3.254e+06, $3.8235e+05, $2135.7, $9.5563e+06, and $1.1588e+06 for the 13, 40, 110, 140, and 160-generating-units respectively were achieved over the existing best costs presented in (Pradhan  et al., 2017).


5.3 [bookmark: _bookmark70][bookmark: _bookmark70]Recommendations

In the case where a researcher wishes to work on ELD problem solving strategies. The following are some suggestions regarding possible research direction.

1. Implementation of the developed Algorithm on a Digital Signal Processor (DSP) chip and testing it using a real power system to ascertain its effectiveness;
2. Development of the proposed algorithm in a suitable java based software package for use by students in their respective course works;
3. Linking the developed ELD encoder with other heuristics and testing their performance compared to the proposed HGAFSA.

5.4 [bookmark: _bookmark71][bookmark: _bookmark71]Limitation

The limitation encountered in this work is summarized in the following.

1. The error due to approximation affected the results presented in some test system cases especially the 110-Unit case.
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APPENDIX A1

Table 4a:13-Units Economic Load Dispatch Data
	Gen.
Unit.
	
Pmin
	
Pmax
	
a
	
B
	
c
	
e
	
f

	1
	0
	680
	0.0003
	8.1
	550
	300
	0.035

	2
	0
	360
	0.0006
	8.1
	309
	200
	0.042

	3
	0
	360
	0.0006
	8.1
	307
	150
	0.042

	4
	60
	180
	0.0032
	7.74
	240
	150
	0.063

	5
	60
	180
	0.0032
	7.74
	240
	150
	0.063

	6
	60
	180
	0.0032
	7.74
	240
	150
	0.063

	7
	60
	180
	0.0032
	7.74
	240
	150
	0.063

	8
	60
	180
	0.0032
	7.74
	240
	150
	0.063

	9
	60
	180
	0.0032
	7.74
	240
	150
	0.063

	10
	40
	120
	0.0028
	8.6
	126
	100
	0.084

	11
	40
	120
	0.0028
	8.6
	126
	100
	0.084

	12
	55
	120
	0.0028
	8.6
	126
	100
	0.084

	13
	55
	120
	0.0028
	8.6
	126
	100
	0.084
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Table 4b: 40-Units Economic Load Dispatch Data
	Gen.
Unit.
	
Pmin
	
Pmax
	
a
	
B
	
c
	
e
	
f

	1
	36
	114
	0.0069
	6.73
	94.705
	100
	0.084

	2
	36
	114
	0.0069
	6.73
	94.705
	100
	0.084

	3
	60
	120
	0.02028
	7.07
	309.54
	100
	0.084

	4
	80
	190
	0.00942
	8.18
	369.03
	150
	0.063

	5
	47
	97
	0.0114
	5.35
	148.89
	120
	0.077

	6
	68
	140
	0.01142
	8.05
	222.33
	100
	0.084

	7
	110
	300
	0.00357
	8.03
	278.71
	200
	0.042

	8
	135
	300
	0.00492
	6.99
	391.98
	200
	0.042

	9
	135
	300
	0.00573
	6.6
	455.76
	200
	0.042

	10
	130
	300
	0.00605
	12.9
	722.82
	200
	0.042

	11
	94
	375
	0.00515
	12.9
	635.2
	200
	0.042

	12
	94
	375
	0.00569
	12.8
	654.69
	200
	0.042

	13
	125
	500
	0.00421
	12.5
	913.4
	300
	0.035

	14
	125
	500
	0.00752
	8.84
	1760.4
	300
	0.035

	15
	125
	500
	0.00708
	9.15
	1728.3
	300
	0.035

	16
	125
	500
	0.00708
	9.15
	1728.3
	300
	0.035

	17
	220
	500
	0.00313
	7.97
	647.85
	300
	0.035

	18
	220
	500
	0.00313
	7.95
	649.69
	300
	0.035

	19
	242
	550
	0.00313
	7.97
	647.83
	300
	0.035

	20
	242
	550
	0.00313
	7.97
	647.81
	300
	0.035

	21
	254
	550
	0.00298
	6.63
	785.96
	300
	0.035

	22
	254
	550
	0.00298
	6.63
	785.96
	300
	0.035

	23
	254
	550
	0.00284
	6.66
	794.53
	300
	0.035

	24
	254
	550
	0.00284
	6.66
	794.53
	300
	0.035

	25
	254
	550
	0.00277
	7.1
	801.32
	300
	0.035

	26
	254
	550
	0.00277
	7.1
	801.32
	300
	0.035

	27
	10
	150
	0.52124
	3.33
	1055.1
	120
	0.077

	28
	10
	150
	0.52124
	3.33
	1055.1
	120
	0.077

	29
	10
	150
	0.52124
	3.33
	1055.1
	120
	0.077

	30
	47
	97
	0.0114
	5.35
	148.89
	120
	0.077

	31
	60
	190
	0.0016
	6.43
	222.92
	150
	0.063

	32
	60
	190
	0.0016
	6.43
	222.92
	150
	0.063

	33
	60
	190
	0.0016
	6.43
	222.92
	150
	0.063

	34
	90
	200
	0.0001
	8.95
	107.87
	200
	0.042

	35
	90
	200
	0.0001
	8.62
	116.58
	200
	0.042

	36
	90
	200
	0.0001
	8.62
	116.58
	200
	0.042

	37
	25
	110
	0.0161
	5.88
	307.45
	80
	0.098

	38
	25
	110
	0.0161
	5.88
	307.45
	80
	0.098

	39
	25
	110
	0.0161
	5.88
	307.45
	80
	0.098

	40
	242
	550
	0.00313
	7.97
	647.83
	300
	0.035
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Table 4c1: 110-Units Economic Load Dispatch Data
	Gen.
Unit.
	
Pmin
	
Pmax
	
a
	
B
	
c
	
e
	
f

	1
	2.4
	12
	0.0253
	25.547
	24.389
	0
	0

	2
	2.4
	12
	0.0265
	25.675
	24.411
	0
	0

	3
	2.4
	12
	0.028
	25.803
	24.638
	0
	0

	4
	2.4
	12
	0.0284
	25.932
	24.76
	0
	0

	5
	2.4
	12
	0.0286
	26.061
	24.888
	0
	0

	6
	4
	20
	0.012
	37.551
	117.76
	0
	0

	7
	4
	20
	0.0126
	37.664
	118.11
	0
	0

	8
	4
	20
	0.0136
	37.777
	118.46
	0
	0

	9
	4
	20
	0.0143
	37.89
	118.82
	0
	0

	10
	15.2
	76
	0.0088
	13.327
	81.136
	0
	0

	11
	15.2
	76
	0.0089
	13.354
	81.298
	0
	0

	12
	15.2
	76
	0.0091
	13.8
	81.464
	0
	0

	13
	15.2
	76
	0.0093
	13.407
	81.626
	0
	0

	14
	25
	100
	0.0062
	18
	217.9
	0
	0

	15
	25
	100
	0.0061
	18.1
	218.34
	0
	0

	16
	25
	100
	0.006
	18.2
	218.78
	0
	0

	17
	54.3
	155
	0.0046
	10.694
	142.74
	0
	0

	18
	54.3
	155
	0.0047
	10.715
	143.03
	0
	0

	19
	54.3
	155
	0.0048
	10.737
	143.32
	0
	0

	20
	54.3
	155
	0.0049
	10.758
	143.6
	0
	0

	21
	68.9
	197
	0.0026
	23
	259.13
	0
	0

	22
	68.9
	197
	0.0026
	23.1
	259.65
	0
	0

	23
	68.9
	197
	0.0026
	23.2
	260.18
	0
	0

	24
	140
	350
	0.0015
	10.862
	177.06
	0
	0

	25
	100
	400
	0.0019
	7.492
	210
	0
	0

	26
	100
	400
	0.0019
	7.503
	211.91
	0
	0

	27
	140
	500
	0.0014
	12
	210
	0
	0

	28
	140
	500
	0.0013
	12.1
	180
	0
	0

	29
	50
	200
	0.0026
	12.2
	240
	0
	0

	30
	25
	100
	0.0039
	12.5
	220
	0
	0

	31
	10
	50
	0.0051
	23
	60
	0
	0

	32
	5
	20
	0.005
	13.5
	50
	0
	0

	33
	20
	80
	0.0078
	13.2
	200
	0
	0

	34
	75
	250
	0.0012
	12.4
	140
	0
	0

	35
	110
	360
	0.0038
	10.3
	120
	0
	0

	36
	130
	400
	0.0043
	9.9
	90
	0
	0

	37
	10
	40
	0.0011
	13.4
	80
	0
	0

	38
	20
	70
	0.0023
	13.3
	70
	0
	0

	39
	25
	100
	0.0034
	12.9
	115
	0
	0

	40
	20
	120
	0.0067
	12.8
	150
	0
	0

	41
	40
	180
	0.0056
	12.7
	40
	0
	0

	42
	50
	220
	0.0023
	12.6
	300
	0
	0

	43
	120
	440
	0.0012
	7.4
	250
	0
	0

	44
	160
	560
	0.0045
	6.6
	100
	0
	0

	45
	150
	660
	0.0022
	6.5
	160
	0
	0

	46
	200
	700
	0.0067
	6.2
	130
	0
	0

	47
	5.4
	32
	0.0353
	26.547
	34.389
	0
	0

	48
	5.4
	32
	0.0365
	26.675
	34.411
	0
	0

	49
	8.4
	52
	0.038
	26.803
	34.638
	0
	0

	50
	8.4
	52
	0.0384
	26.932
	34.761
	0
	0



	51
	8.4
	52
	0.0386
	17.061
	34.888
	0
	0

	52
	12
	60
	0.032
	38.551
	127.76
	0
	0

	53
	12
	60
	0.0326
	36.664
	128.11
	0
	0

	54
	12
	60
	0.0236
	38.777
	128.46
	0
	0



Table 4c2: 110-Units Economic Load Dispatch Data (Continued)
	Gen.
Unit.
	
Pmin
	
Pmax
	
a
	
b
	
c
	
e
	
f

	55
	12
	60
	0.0243
	38.89
	128.82
	0
	0

	56
	25.2
	96
	0.0098
	14.327
	82.136
	0
	0

	57
	25.2
	96
	0.0099
	14.354
	82.298
	0
	0

	58
	35
	100
	0.0092
	14.38
	82.464
	0
	0

	59
	35
	100
	0.0094
	14.407
	82.626
	0
	0

	60
	45
	120
	0.0072
	19
	218.9
	0
	0

	61
	45
	120
	0.0071
	19.1
	219.34
	0
	0

	62
	45
	120
	0.007
	19.2
	219.78
	0
	0

	63
	54.3
	185
	0.0066
	11.694
	143.74
	0
	0

	64
	54.3
	185
	0.0057
	11.715
	144.03
	0
	0

	65
	54.3
	185
	0.0058
	11.737
	144.32
	0
	0

	66
	54.3
	185
	0.0059
	11.758
	144.6
	0
	0

	67
	70
	197
	0.0036
	24
	269.13
	0
	0

	68
	70
	197
	0.0036
	24.1
	269.65
	0
	0

	69
	70
	197
	0.0036
	24.2
	270.18
	0
	0

	70
	150
	360
	0.0025
	11.862
	187.06
	0
	0

	71
	160
	400
	0.0029
	8.492
	320
	0
	0

	72
	160
	400
	0.003
	8.503
	321.91
	0
	0

	73
	60
	300
	0.0054
	13.327
	52.136
	0
	0

	74
	50
	250
	0.0055
	12.354
	42.298
	0
	0

	75
	30
	90
	0.0099
	11.38
	32.464
	0
	0

	76
	12
	50
	0.0031
	9.407
	23.626
	0
	0

	77
	160
	450
	0.0024
	14
	220
	0
	0

	78
	150
	600
	0.0023
	13.1
	190
	0
	0

	79
	50
	200
	0.0036
	13.2
	250
	0
	0

	80
	20
	120
	0.0049
	13.5
	230
	0
	0

	81
	10
	55
	0.0061
	24
	70
	0
	0

	82
	12
	40
	0.007
	14.5
	60
	0
	0

	83
	20
	80
	0.0088
	14.2
	210
	0
	0

	84
	50
	200
	0.0022
	13.4
	150
	0
	0

	85
	80
	325
	0.0048
	11.3
	130
	0
	0

	86
	120
	440
	0.0053
	8.9
	80
	0
	0

	87
	10
	35
	0.0021
	14.4
	90
	0
	0

	88
	20
	55
	0.0033
	14.3
	80
	0
	0

	89
	20
	100
	0.0034
	13.9
	125
	0
	0

	90
	40
	220
	0.0037
	13.8
	160
	0
	0

	91
	30
	140
	0.0066
	13.7
	50
	0
	0

	92
	40
	100
	0.0043
	13.6
	400
	0
	0

	93
	100
	440
	0.0022
	8.4
	260
	0
	0

	94
	100
	500
	0.0055
	7.6
	110
	0
	0

	95
	100
	600
	0.0032
	7.5
	170
	0
	0

	96
	200
	700
	0.0077
	7.2
	140
	0
	0

	97
	3.6
	15
	0.0353
	26.547
	26.389
	0
	0

	98
	3.6
	15
	0.0365
	26.675
	25.411
	0
	0

	99
	4.4
	22
	0.038
	26.803
	25.638
	0
	0

	100
	4.4
	22
	0.0384
	26.932
	25.76
	0
	0

	101
	10
	60
	0.021
	15.3
	65
	0
	0

	102
	10
	80
	0.023
	16
	82
	0
	0

	103
	20
	100
	0.024
	20.2
	86
	0
	0

	104
	20
	120
	0.035
	20.2
	84
	0
	0



	105
	40
	150
	0.034
	25.6
	75
	0
	0

	106
	40
	280
	0.037
	30.5
	56
	0
	0

	107
	50
	520
	0.039
	32.5
	67
	0
	0

	108
	30
	150
	0.035
	26
	68
	0
	0

	109
	40
	320
	0.028
	25.8
	69
	0
	0

	110
	20
	200
	0.026
	27
	72
	0
	0



APPENDIX A4

Table 4d1: 140-Units Economic Load Dispatch Data
	Gen.
Unit.
	
Pmin
	
Pmax
	
a
	
b
	
c
	
e
	
f

	1
	71
	119
	0.032888
	61.242
	1220.6
	0
	0

	2
	120
	189
	0.00828
	41.095
	1315.1
	0
	0

	3
	125
	190
	0.003849
	46.31
	874.29
	0
	0

	4
	125
	190
	0.003849
	46.31
	874.29
	0
	0

	5
	90
	190
	0.042468
	54.242
	1976.5
	0
	0

	6
	90
	190
	0.014992
	61.215
	1338.1
	0
	0

	7
	280
	490
	0.007039
	11.791
	1818.3
	0
	0

	8
	280
	490
	0.003079
	15.055
	1134
	0
	0

	9
	260
	496
	0.005063
	13.226
	1320.6
	0
	0

	10
	260
	496
	0.005063
	13.226
	1320.6
	0
	0

	11
	260
	496
	0.005063
	13.226
	1320.6
	0
	0

	12
	260
	496
	0.003552
	14.498
	1106.5
	0
	0

	13
	260
	506
	0.003901
	14.651
	1176.5
	0
	0

	14
	260
	509
	0.003901
	14.651
	1176.5
	0
	0

	15
	260
	506
	0.003901
	14.651
	1176.5
	0
	0

	16
	260
	505
	0.003901
	14.651
	1176.5
	0
	0

	17
	260
	506
	0.002393
	15.669
	1017.4
	0
	0

	18
	260
	506
	0.002393
	15.669
	1017.4
	0
	0

	19
	260
	505
	0.003684
	14.656
	1229.1
	0
	0

	20
	260
	505
	0.003684
	14.656
	1229.1
	0
	0

	21
	260
	505
	0.003684
	14.656
	1229.1
	0
	0

	22
	260
	505
	0.003684
	14.656
	1229.1
	0
	0

	23
	260
	505
	0.004004
	14.378
	1267.9
	0
	0

	24
	260
	505
	0.003684
	14.656
	1229.1
	0
	0

	25
	280
	537
	0.001619
	16.261
	975.93
	0
	0

	26
	280
	537
	0.005093
	13.362
	1532.1
	0
	0

	27
	280
	549
	0.000993
	17.203
	641.99
	0
	0

	28
	280
	549
	0.000993
	17.203
	641.99
	0
	0

	29
	260
	501
	0.002473
	15.274
	911.53
	0
	0

	30
	260
	501
	0.002547
	15.212
	910.53
	0
	0

	31
	260
	506
	0.003542
	15.033
	1074.8
	0
	0

	32
	260
	506
	0.003542
	15.033
	1074.8
	0
	0

	33
	260
	506
	0.003542
	15.033
	1074.8
	0
	0

	34
	260
	506
	0.003542
	15.033
	1074.8
	0
	0

	35
	260
	500
	0.003132
	13.992
	1278.5
	0
	0

	36
	260
	500
	0.001323
	15.679
	861.74
	0
	0

	37
	120
	241
	0.00295
	16.542
	408.83
	0
	0

	38
	120
	241
	0.00295
	16.542
	408.83
	0
	0

	39
	423
	774
	0.000991
	16.518
	1288.8
	0
	0

	40
	423
	769
	0.001581
	15.815
	1436.3
	0
	0

	41
	3
	19
	0.90236
	75.464
	669.99
	0
	0

	42
	3
	28
	0.1103
	129.54
	134.54
	0
	0

	43
	160
	250
	0.024493
	56.613
	3427.9
	0
	0

	44
	160
	250
	0.029156
	54.451
	3751.8
	0
	0

	45
	160
	250
	0.024667
	54.736
	3918.8
	0
	0

	46
	160
	250
	0.016517
	58.034
	3379.6
	0
	0

	47
	160
	250
	0.026584
	55.981
	3345.3
	0
	0

	48
	160
	250
	0.00754
	61.52
	3138.8
	0
	0

	49
	160
	250
	0.01643
	58.635
	3453.1
	0
	0

	50
	160
	250
	0.045934
	44.647
	5119.3
	0
	0

	51
	165
	504
	4.40E-05
	71.584
	1898.4
	0
	0

	52
	165
	504
	4.40E-05
	71.584
	1898.4
	0
	0

	53
	165
	504
	4.40E-05
	71.584
	1898.4
	0
	0



	 (
54
165
504
4.40E-05
71.584
1898.4
0
0
)




Table 4d2: 140-Units Economic Load Dispatch Data (Continued)
	Gen.
Unit.
	
Pmin
	
Pmax
	
a
	
b
	
c
	
e
	
f

	55
	180
	471
	0.002528
	85.12
	2473.4
	0
	0

	56
	180
	561
	0.000131
	87.682
	2781.7
	0
	0

	57
	103
	341
	0.010372
	69.532
	5515.5
	0
	0

	58
	198
	617
	0.007627
	78.339
	3478.3
	0
	0

	59
	100
	312
	0.012464
	58.172
	6240.9
	0
	0

	60
	153
	471
	0.039441
	46.636
	9960.1
	0
	0

	61
	163
	500
	0.007278
	76.947
	3672
	0
	0

	62
	95
	302
	4.40E-05
	80.761
	1837.4
	0
	0

	63
	160
	511
	4.40E-05
	70.136
	3108.4
	0
	0

	64
	160
	511
	4.40E-05
	70.136
	3108.4
	0
	0

	65
	196
	490
	0.018827
	49.84
	7095.5
	0
	0

	66
	196
	490
	0.010852
	65.404
	3392.7
	0
	0

	67
	196
	490
	0.018827
	49.84
	7095.5
	0
	0

	68
	196
	490
	0.018827
	49.84
	7095.5
	0
	0

	69
	130
	432
	0.03456
	66.465
	4288.3
	0
	0

	70
	130
	432
	0.08154
	22.941
	13813
	0
	0

	71
	137
	455
	0.023534
	64.314
	4435.5
	0
	0

	72
	137
	455
	0.035475
	45.017
	9750.8
	0
	0

	73
	195
	541
	0.000915
	70.644
	1042.4
	0
	0

	74
	175
	536
	4.40E-05
	70.959
	1159.9
	0
	0

	75
	175
	540
	4.40E-05
	70.959
	1159.9
	0
	0

	76
	175
	538
	0.001307
	70.302
	1304
	0
	0

	77
	175
	540
	0.000392
	70.662
	1156.2
	0
	0

	78
	330
	574
	8.70E-05
	71.101
	2119
	0
	0

	79
	160
	531
	0.000521
	37.854
	779.52
	0
	0

	80
	160
	531
	0.000498
	37.768
	829.89
	0
	0

	81
	200
	542
	0.001046
	67.983
	2333.7
	0
	0

	82
	56
	132
	0.13205
	77.838
	2029
	0
	0

	83
	115
	245
	0.096968
	63.671
	4412
	0
	0

	84
	115
	245
	0.054868
	79.458
	2982.2
	0
	0

	85
	115
	245
	0.054868
	79.458
	2982.2
	0
	0

	86
	207
	307
	0.014382
	93.966
	3174.9
	0
	0

	87
	207
	307
	0.013161
	94.723
	3218.4
	0
	0

	88
	175
	345
	0.016033
	66.919
	3723.8
	0
	0

	89
	175
	345
	0.013653
	68.185
	3551.4
	0
	0

	90
	175
	345
	0.028148
	60.821
	4322.6
	0
	0

	91
	175
	345
	0.01347
	68.551
	3493.7
	0
	0

	92
	360
	580
	6.40E-05
	2.842
	226.8
	0
	0

	93
	415
	645
	0.000252
	2.946
	382.93
	0
	0

	94
	795
	984
	2.20E-05
	3.096
	156.99
	0
	0

	95
	795
	978
	2.20E-05
	3.04
	154.48
	0
	0

	96
	578
	682
	0.000203
	1.709
	332.83
	0
	0

	97
	615
	720
	0.000198
	1.668
	326.6
	0
	0

	98
	612
	718
	0.000215
	1.789
	345.31
	0
	0

	99
	612
	720
	0.000218
	1.815
	350.37
	0
	0

	100
	758
	964
	0.000193
	2.726
	370.38
	0
	0

	101
	755
	958
	0.000197
	2.732
	367.07
	0
	0

	102
	750
	1007
	0.000324
	2.651
	124.88
	0
	0

	103
	750
	1006
	0.000344
	2.798
	130.79
	0
	0



	104
	713
	1013
	0.00069
	1.595
	878.75
	0
	0

	105
	718
	1020
	0.00065
	1.503
	827.96
	0
	0

	106
	791
	954
	0.000233
	2.425
	432.01
	0
	0

	107
	786
	952
	0.000239
	2.499
	445.61
	0
	0

	108
	795
	1006
	0.000261
	2.674
	467.22
	0
	0





Table 4d3: 140-Units Economic Load Dispatch Data (Continued)
	Gen.
Unit.
	
Pmin
	
Pmax
	
a
	
b
	
c
	
e
	
f

	109
	795
	1013
	0.000259
	2.692
	475.94
	0
	0

	110
	795
	1021
	0.000707
	1.633
	899.46
	0
	0

	111
	795
	1015
	0.000786
	1.816
	1000.4
	0
	0

	112
	94
	203
	0.014355
	89.83
	1269.1
	0
	0

	113
	94
	203
	0.014355
	89.83
	1269.1
	0
	0

	114
	94
	203
	0.014355
	89.83
	1269.1
	0
	0

	115
	244
	379
	0.030266
	64.125
	4965.1
	0
	0

	116
	244
	379
	0.030266
	64.125
	4965.1
	0
	0

	117
	244
	379
	0.030266
	64.125
	4965.1
	0
	0

	118
	95
	190
	0.024027
	76.129
	2243.2
	0
	0

	119
	95
	189
	0.00158
	81.805
	2290.4
	0
	0

	120
	116
	194
	0.022095
	81.14
	1681.5
	0
	0

	121
	175
	321
	0.07681
	46.665
	6743.3
	0
	0

	122
	2
	19
	0.95344
	78.412
	394.4
	0
	0

	123
	4
	59
	4.40E-05
	112.09
	1243.2
	0
	0

	124
	15
	83
	0.072468
	90.871
	1454.7
	0
	0

	125
	9
	53
	0.000448
	97.116
	1011.1
	0
	0

	126
	12
	37
	0.59911
	83.244
	909.27
	0
	0

	127
	10
	34
	0.24471
	95.665
	689.38
	0
	0

	128
	112
	373
	4.20E-05
	91.202
	1443.8
	0
	0

	129
	4
	20
	0.085145
	104.5
	535.55
	0
	0

	130
	5
	38
	0.52472
	83.015
	617.73
	0
	0

	131
	5
	19
	0.17652
	127.8
	90.966
	0
	0

	132
	50
	98
	0.063414
	77.929
	974.45
	0
	0

	133
	5
	10
	2.7405
	92.779
	263.81
	0
	0

	134
	42
	74
	0.11244
	80.95
	1335.6
	0
	0

	135
	42
	74
	0.041529
	89.073
	1033.9
	0
	0

	136
	41
	105
	0.000911
	161.29
	1391.3
	0
	0

	137
	17
	51
	0.005245
	161.83
	4477.1
	0
	0

	138
	7
	19
	0.23479
	84.972
	57.794
	0
	0

	139
	7
	19
	0.23479
	84.972
	57.794
	0
	0

	140
	26
	40
	1.1119
	16.087
	1258.4
	0
	0



APPENDIX A5



Table 4e1: 160-Units Economic Load Dispatch Data (Continued)
	Gen.
Unit.
	
Pmin
	
Pmax
	
a
	
b
	
c
	
e
	
f

	1
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	2
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	3
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	4
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	5
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	6
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	7
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	8
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	9
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	10
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	11
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	12
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	13
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	14
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	15
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	16
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	17
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	18
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	19
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	20
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	21
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059





Table 4e2: 160-Units Economic Load Dispatch Data (Continued)
	Gen. Unit.
	Pmin
	Pmax
	a
	b
	c
	e
	f

	22
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	23
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	24
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	25
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	26
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	27
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	28
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	29
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	30
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	31
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	32
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	33
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	34
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	35
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	36
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	37
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	38
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	39
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	40
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	41
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	42
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	43
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	44
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	45
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	46
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38



	47
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	48
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	49
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	50
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	51
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	52
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	53
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	54
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	55
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	56
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	57
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	58
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	59
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	60
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	61
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	62
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	63
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	64
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	65
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	66
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	67
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	68
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	69
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	70
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	71
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	72
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	73
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	74
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	75
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733




Table 4e3: 160-Units Economic Load Dispatch Data (Continued)
	Gen. Unit.
	Pmin
	Pmax
	a
	b
	c
	e
	f

	76
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	77
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	78
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	79
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	80
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	81
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	82
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	83
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	84
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	85
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	86
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	87
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	88
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	89
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	90
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	91
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	92
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	93
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	94
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	95
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	96
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	97
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	98
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	99
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	100
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	101
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	102
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	103
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	104
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	105
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	106
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38



	107
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	108
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	109
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	110
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	111
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	112
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	113
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	114
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	115
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	116
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	117
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	118
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	119
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	120
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	121
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	122
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	123
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	124
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	125
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	126
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	127
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	128
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	129
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817





Table 4e4: 160-Units Economic Load Dispatch Data (Continued)
	Gen. Unit.
	Pmin
	Pmax
	a
	b
	c
	e
	f

	130
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	131
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	132
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	133
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	134
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	135
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	136
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	137
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	138
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	139
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	140
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	141
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	142
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	143
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	144
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	145
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	146
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	147
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	148
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	149
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	150
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938

	151
	196
	250
	0.0019
	-0.3059
	21.13
	0.0211
	-3.059

	152
	157
	230
	0.0042
	-1.269
	118.4
	0.1184
	-12.69

	153
	200
	332
	0.0015
	-0.3116
	39.79
	0.0398
	-3.116

	154
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	155
	190
	338
	0.0011
	-0.0873
	13.92
	0.0139
	-0.8733

	156
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	157
	200
	331
	0.0011
	-0.1325
	18.93
	0.0189
	-1.325

	158
	200
	265
	0.0059
	-2.338
	266.8
	0.2668
	-23.38

	159
	370
	440
	0.0006
	-0.0182
	14.23
	0.0142
	-0.1817

	160
	200
	362
	0.0011
	-0.0994
	13.97
	0.014
	-0.9938



APPENDIX B

m.File MATLAB Codes for the proposed ELD algorithm Appendix B1: Hybrid Genetic-Artificial Fish Swarm Algorithm


1. function HGAFSA(Ngen)

2. addpath('AFSA');

3. addpath('BCGA');

4. addpath('Integrators'); 5. [
~,maxit,mincost,popsize,mutrate,selection,nbits,opt_type,lo

,hi] = parameters_bcga;

6. [nfish,npar,Visual_distance,Crowdness_factor,S,max_iga,ntry

]=Parameters_afsa;

7. [repparam,crosparam,mutatparam]=gengaparams;

8. [par,pop]=reproduction(repparam);

9. [Value,L]=objF(par);

10. % Vv=Value(1);

11.	% Ll=L(1);

12. [cost,id]=sortrows([Value,L],1);

13. pop=pop(id,:);

14. if opt_type==2

15. minc=cost(1,:);

16. else

17. minc=cost(end,:);

18. end

19.	minc1=[];

20.	mH=[];

21. if opt_type==2

a. minc1=sort([minc1,minc(:,1)'],'descend');

b. mH=sort([mH,minc(:,2:end)'],'descend');

22. else

a. minc1=sort([minc1,minc(:,1)']);

b. mH=sort([mH,minc(:,2:end)']);

23. end

24. iga=1;

25. while iga<max_iga

26.	%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@
27. New_Fish=[];

28. Xi=par;

29. for Fish=1:size(par,1)

30.	%

%%%%%%%%%%%%%%%%%%%%¬¬¬¬¬¬¬¬PREYING¬¬¬¬¬¬¬¬%%%%%%%%%%%%%%%%

%%%%

31.	X_new=feval('prey',Xi(Fish,:),Visual_distance,S,iga,ma x_iga,ntry,opt_type);

32.	%

%%%%%%%%%%%%%%%%%%%%¬¬¬¬¬¬¬¬£££££££¬¬¬¬¬¬¬¬%%%%%%%%%%%%%%%%

%%%%

33. if Fish==1

a. if iga==1

34. X_best=X_new;

a. end

35. else

a. Y_best=objF(X_best);

b. Y_new=objF(X_new);

c. if opt_type==1

i. if Y_new>Y_best

ii. X_best=X_new;

iii. end

d. end

e. if opt_type==2

i. if Y_new<Y_best

ii. X_best=X_new;

iii. end

f. end

36. end

37. New_Fish=[New_Fish;X_new];

38. end

39. new_par=New_Fish;

40. new_pop = transform_ga_afsa( New_Fish,size(pop,2) );


41. [par,pop,Minc] = compare_ga_afsa( par,new_par,pop,new_pop,opt_type);
42. if opt_type==2

a. minc=flipud(sortrows([minc;Minc],1));

43. else

a. minc=sortrows([minc;Minc],1);

44. end


45. if opt_type==2

a. minc1=sort([minc1,minc(:,1)'],'descend');

b. mH=sort([mH,minc(:,2:end)'],'descend');

46. else

a. minc1=sort([minc1,minc(:,1)']);

b. mH=sort([mH,minc(:,2:end)']);

47. end

48. [new_par,new_pop]=crossover(pop,crosparam);

49. [par,pop,Minc] = compare_ga_afsa( par,new_par,pop,new_pop,opt_type);
50. if opt_type==2

a. minc=flipud(sortrows([minc;Minc],1));

51. else

a. minc=sortrows([minc;Minc],1);

52. end

53. if opt_type==2

a. minc1=sort([minc1,minc(:,1)'],'descend');

b. mH=sort([mH,minc(:,2:end)'],'descend');

54. else

a. minc1=sort([minc1,minc(:,1)']);

b. mH=sort([mH,minc(:,2:end)']);

55. end

56. [new_par,new_pop]=mutation(pop,mutatparam);

57. [par,pop,Minc] = compare_ga_afsa( par,new_par,pop,new_pop,opt_type);
58. if opt_type==2

a. minc=flipud(sortrows([minc;Minc],1));

59. else

a. minc=sortrows([minc;Minc],1);

60. end

61. if opt_type==2

a. minc1=sort([minc1,minc(:,1)'],'descend');

b. mH=sort([mH,minc(:,2:end)'],'descend');

62. else

a. minc1=sort([minc1,minc(:,1)']);

b. mH=sort([mH,minc(:,2:end)']);

63. end

64.	%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@
65.	%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@
66. New_Fish=[];

67. Xi=par;

68. for Fish=1:size(par,1)

69.	%

%%%%%%%%%%%%%%%%%%%%¬¬¬¬¬¬¬¬PREYING¬¬¬¬¬¬¬¬%%%%%%%%%%%%%%%%

%%%%

70.	X_new=feval('swarm',Xi(Fish,:),Visual_distance,Crowdne ss_factor,S,iga,max_iga,ntry,opt_type);
71.	%

%%%%%%%%%%%%%%%%%%%%¬¬¬¬¬¬¬¬£££££££¬¬¬¬¬¬¬¬%%%%%%%%%%%%%%%%

%%%%

72. if Fish==1

a. if iga==1

73. X_best=X_new;

a. end

74. else

a. Y_best=objF(X_best);

b. Y_new=objF(X_new);

c. if opt_type==1

i. if Y_new>Y_best

ii. X_best=X_new;

iii. end

d. end

e. if opt_type==2

i. if Y_new<Y_best

ii. X_best=X_new;

iii. end

f. end

75. end

76. New_Fish=[New_Fish;X_new];

77. end

78. new_par=New_Fish;

79. new_pop = transform_ga_afsa( New_Fish,size(pop,2) );

80. [par,pop,Minc] = compare_ga_afsa( par,new_par,pop,new_pop,opt_type);
81. if opt_type==2

a. minc=flipud(sortrows([minc;Minc],1));

82. else

a. minc=sortrows([minc;Minc],1);

83. end

84. if opt_type==2

a. minc1=sort([minc1,minc(:,1)'],'descend');

b. mH=sort([mH,minc(:,2:end)'],'descend');

85. else

a. minc1=sort([minc1,minc(:,1)']);

b. mH=sort([mH,minc(:,2:end)']);

86. end

87. [new_par,new_pop]=crossover(pop,crosparam);

88. [par,pop,Minc] = compare_ga_afsa( par,new_par,pop,new_pop,opt_type);
89. if opt_type==2

a. minc=flipud(sortrows([minc;Minc],1));

90. else

a. minc=sortrows([minc;Minc],1);

91. end

92. if opt_type==2

a. minc1=sort([minc1,minc(:,1)'],'descend');

b. mH=sort([mH,minc(:,2:end)'],'descend');

93. else

a. minc1=sort([minc1,minc(:,1)']);

b. mH=sort([mH,minc(:,2:end)']);

94. end

95. [new_par,new_pop]=mutation(pop,mutatparam);

96. [par,pop,Minc] = compare_ga_afsa( par,new_par,pop,new_pop,opt_type);
97. if opt_type==2

a. minc=flipud(sortrows([minc;Minc],1));

98. else

a. minc=sortrows([minc;Minc],1);

99. end

100. if opt_type==2

a. minc1=sort([minc1,minc(:,1)'],'descend');

b. mH=sort([mH,minc(:,2:end)'],'descend');

101. else

a. minc1=sort([minc1,minc(:,1)']);

b. mH=sort([mH,minc(:,2:end)']);

102. end

103.	%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@
104.	%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@
105. New_Fish=[];

106. Xi=par;

107. for Fish=1:size(par,1)

108.	%

%%%%%%%%%%%%%%%%%%%%¬¬¬¬¬¬¬¬PREYING¬¬¬¬¬¬¬¬%%%%%%%%%%%%%%%%

%%%%

109.	X_new=feval('chase',Xi(Fish,:),Visual_distance,Crowdne ss_factor,S,iga,max_iga,ntry,opt_type);
110.	%

%%%%%%%%%%%%%%%%%%%%¬¬¬¬¬¬¬¬£££££££¬¬¬¬¬¬¬¬%%%%%%%%%%%%%%%%

%%%%

111. if Fish==1

a. if iga==1

112. X_best=X_new;

a. end

113. else

a. Y_best=objF(X_best);

b. Y_new=objF(X_new);

c. if opt_type==1

i. if Y_new>Y_best

ii. X_best=X_new;

iii. end

d. end

e. if opt_type==2

i. if Y_new<Y_best

ii. X_best=X_new;

iii. end

f. end

114. end

115. New_Fish=[New_Fish;X_new];

116. end

117. new_par=New_Fish;

118. new_pop = transform_ga_afsa( New_Fish,size(pop,2) );

119. [par,pop,Minc] = compare_ga_afsa( par,new_par,pop,new_pop,opt_type);

120. if opt_type==2

a. minc=flipud(sortrows([minc;Minc],1));

121. else

a. minc=sortrows([minc;Minc],1);

122. end

123. if opt_type==2

a. minc1=sort([minc1,minc(:,1)'],'descend');

b. mH=sort([mH,minc(:,2:end)'],'descend');

124. else

a. minc1=sort([minc1,minc(:,1)']);

b. mH=sort([mH,minc(:,2:end)']);

125. end

126. [new_par,new_pop]=crossover(pop,crosparam);

127. [par,pop,Minc] = compare_ga_afsa( par,new_par,pop,new_pop,opt_type);
128. if opt_type==2

a. minc=flipud(sortrows([minc;Minc],1));

129. else

a. minc=sortrows([minc;Minc],1);

130. end

131. if opt_type==2

a. minc1=sort([minc1,minc(:,1)'],'descend');

b. mH=sort([mH,minc(:,2:end)'],'descend');

132. else

a. minc1=sort([minc1,minc(:,1)']);

b. mH=sort([mH,minc(:,2:end)']);

133. end

134. [new_par,new_pop]=mutation(pop,mutatparam);


135. [par,pop,Minc] = compare_ga_afsa( par,new_par,pop,new_pop,opt_type);
136. if opt_type==2

a. minc=flipud(sortrows([minc;Minc],1));

137. else

a. minc=sortrows([minc;Minc],1);

138. end

139. if opt_type==2

a. minc1=sort([minc1,minc(:,1)'],'descend');

b. mH=sort([mH,minc(:,2:end)'],'descend');

140. else

a. minc1=sort([minc1,minc(:,1)']);

b. mH=sort([mH,minc(:,2:end)']);

141. end

142.	%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@
143. iga=iga+1;

144. end

145. day=clock;

146. disp(datestr(datenum(day(1),day(2),day(3),day(4),day(5

),day(6)),0))

147. format shortg

148. disp(['popsize = ' num2str(popsize) ' mutrate = ' num2str(mutrate) ' # par = ' num2str(npar)])
149. disp(['#generations=' num2str(iga) ' best cost=' num2str(cost(1))])
150. disp('best solution')

151. disp(num2str(par(1,:)))

152. disp('Hybrid Genetic Algorithm and Artificial Fish Swarm Algorithm')
153. disp(['each parameter represented by ' num2str(nbits) ' bits'])
154. % % minc=minc(end-popsize+1:end,:);

155.	% minc1=minc(:,1)';

156.	% mH=minc(:,2:end)';

157.	% % minc1(1)=Vv; 158.	% % mH(1)=Ll;
159. for y=1:length(minc1)

160. if isnan(minc1(y))==0

a. z=minc1(y);

b. break

161. end

162. end

163. figure

164. % plot(1:Ngen,minc1(end-Ngen+1:end));

165. plot(0:Ngen,[z,minc1(end-Ngen+1:end)],'LineWidth',2);

166. xlabel('generation');ylabel('cost');

167. title(['HGAFSA Optimization Curve for ',num2str(size(mH,1)),' - Units'])
168. % figure

169. % for k=1:size(mH,1)

170.	% plot(1:size(mH,2),mH(k,:));

171. % hold on

172. % end

173. % xlabel('generation');ylabel('parameter(X)');

174. % title('HGAFSA')

175. disp(['Optimum Cost = ',num2str(minc(end,1))])

176. disp(['Best Value of X = ',num2str(minc(end,2:end))])

177. %text(0,minc(1),'best');text(1,minc(2),'population average')
178. rmpath('AFSA');

179. rmpath('BCGA');

180. rmpath('Integrators');

181. end

APPENDIX B2

m.File: Sub-Function “ELD encoder algorithm”




1. function Xeld=eldencoder(X)

2. [ Data,Ptotal] = generation_data;

3. Xi=X;

4. X=abs([X,X.*sin(2*pi*X),X.*cos(2*pi*X),sin(2*pi*X),cos(2*pi

*X),log(X),cumsum(X,2),cumsum(X,1)]);

5. [a,b]=size(X);

6. % X=[X,rand(size(X)).X]; 7. % Xeld=[];
8. Ptotal=Ptotal-sum(Data(:,2));

9. % while size(Xeld,1)<size(X,1) 10.	Xl=[];
11. for loc=1:size(Data,1)

12. for kk=1:size(X,1)

13.	Xo(kk,:)=(Data(loc,3)-Data(loc,2))*X(kk,:);

14.	end

15.	Xl=[Xl,{Xo}];

16. X=X(randperm(a),randperm(b));

17. end

18.	X0=[];

19. for i=1:size(X,1)

20. for j=1:size(X,2)

a. for loc=1:size(Data,1)

b. Xx(1,loc)=Xl{loc}(i,j);

c. end

d. X0=[X0;Xx];

21. end

22. end

23.	% Xeld=[];

24. % while size(Xeld,1)<size(Xi,1)

25. Xmax=[];

26. for k=1:size(X0,1)

27.	X0(k,:)=X0(k,:)*Ptotal/sum(X0(k,:))+(Data(:,2))';

28.	Xmax=[Xmax;Data(:,3)'];

29.	%	X0(k,:)=cenforce(X0(k,:),(Data(:,3)- Data(:,2))');
30. end

31. while isempty(find(sum((X0-Xmax)>0,2)'>0, 1))==0

32. for i=find(sum((X0-Xmax)>0,2)'>0)

33. for j=1:size(X0,2)

a. if X0(i,j)>Data(j,3)

i. Xs=X0(i,j);

ii. X0(i,j)=rand*(Data(j,3)-Data(j,2))+Data(j,2);

iii. d=Xs-X0(i,j);

iv. while d~=0

v. k=randi(size(X0,2));

34.	%	k=k+1;

35.	%	if k>size(X0,2) 36.	%		k=1;
37. %	end

i. if X0(i,k)<Data(k,3)

1. h=rand*(-X0(i,k)+Data(k,3));

2. if d<h

a. X0(i,k)=X0(i,k)+d;

b. d=0;

3. else

a. d=d-h;

b. X0(i,k)=X0(i,k)+h;

4. end

ii. end

iii. end

b. end

38. end

39. end

40. clc

41. X0

42. end

43. Xeld=X0;

APPENDIX B3

m. File: Sub-Function “ObjF_ELD_fuel(X)”


1. function [Cost,Xeld] = ObjF_ELD_fuel(X)

2. %OBJF_ELD Summary of this function goes here

3. %	Detailed explanation goes here

4. [ Data] = generation_data;

5. Xeld=eldencoder(X);

6. Cost=0;

7. for i=1:size(Xeld,2)

8. Cost=Cost+Data(i,6)+Xeld(:,i)*Data(i,5)+(Xeld(:,i).^2)*Data (i,4)+abs(Data(i,7)*sin(Data(i,8)*(Data(i,2)-Xeld(:,i))));
9. end

10. [Cost,idc]=sort(Cost);

11. Xeld=Xeld(idc,:);

12. Cost=Cost(1:size(X,1),:);

13. Xeld=Xeld(1:size(X,1),:);

APPENDIX B4

m. File: Sub-Function “compare_ga_afsa(par,new_par,pop,new_pop,opt_type)”
1. function [Par,Pop,Minc] = compare_ga_afsa( par,new_par,pop,new_pop,opt_type)
2. %COMPARE_GA_AFSA Summary of this function goes here

3. %	Detailed explanation goes here

4. [Value,L]=objF(par);

5. [cost,id]=sortrows([Value,L],1);

6. pop=pop(id,:);

7. par=par(id,:);

8. if opt_type==2

9. minc=cost(1,:);

10. else

11. minc=cost(end,:);

12. end

13. % NP=size(new_par)

14. % P=size(par)

15. if size(new_par,1)<size(par,1)

16. new_par=[new_par;par(end,:)];

17. end

18. % NP1=size(new_par)

19. % P1=size(par)

20.	%

21. % NP=size(new_pop)

22. % P=size(pop)

23. if size(new_pop,1)<size(pop,1)

24. new_pop=[new_pop;pop(end,:)];

25. end

26. % NP1=size(new_pop)

27. % P1=size(pop)

28. [Value1,L]=objF(new_par);

29. [cost1,id]=sortrows([Value1,L],1);

30. new_pop=new_pop(id,:);

31. new_par=new_par(id,:);

32. for r=1:size(cost,1)

33. if opt_type==2

34. if cost(r,1)<cost1(r,1)

a. Cost(r,:)=cost(r,:);

b. Par(r,:)=par(r,:);

c. Pop(r,:)=pop(r,:);

35. else

a. Cost(r,:)=cost1(r,:);

b. Par(r,:)=new_par(r,:);

c. Pop(r,:)=new_pop(r,:);

36. end

37. else

38. if cost(r,1)>cost1(r,1)

a. Cost(r,:)=cost(r,:);

b. Par(r,:)=par(r,:);

c. Pop(r,:)=pop(r,:);

39. else

a. Cost(r,:)=cost1(r,:);

b. Par(r,:)=new_par(r,:);

c. Pop(r,:)=new_pop(r,:);

40. end

41. end

42. end

43. [Cost,id]=sortrows(Cost,1);

44. Pop=Pop(id,:);

45. Par=Par(id,:);

46. if opt_type==2

47. Minc=Cost(1,:);

48. else

49. Minc=Cost(end,:);

50. end

51. end

APPENDIX B5

m. File: Sub-Function “reproduction (repparam)”




1. function [par,pop]=reproduction(repparam)

2. lo=repparam{2}(1);

3. hi=repparam{2}(2);

4. nbits=repparam{2}(3);

5. pop=round(rand(repparam{1})); % random population of

6. % 1s and 0s

7. par=gadecode(pop,lo,hi,nbits); % convert binary to

APPENDIX B6

m. File: Sub-Function “mutation (pop, mutatparam)”


1. function [par,pop]=mutation(pop,mutatparam)

2. mrow=mutatparam{1};

3. mcol=mutatparam{2};

4. nmut=mutatparam{3};

5. lo=mutatparam{4};

6. hi=mutatparam{5};

7. nbits=mutatparam{6};

8. for ii=1:nmut

9. pop(mrow(ii),mcol(ii))=abs(pop(mrow(ii),mcol(ii))-1);

10. % toggles bits

11. end% ii

12. par=gadecode(pop,lo,hi,nbits); % convert binary to

APPENDIX B7

m. File: Sub-Function “crossover(pop,crossparam)”


1. function [par,pop]=crossover(pop,crosparam)

2. keep=crosparam{1};

3. ix=crosparam{2};

4. ma=crosparam{3};

5. xp=crosparam{4};

6. pa=crosparam{5};

7. Nt=crosparam{6};

8. lo=crosparam{7};

9. hi=crosparam{8};

10. nbits=crosparam{9};

11. pop(keep+ix,:)=[pop(ma,1:xp) pop(pa,xp+1:Nt)];

12. pop(keep+ix+1,:)=[pop(pa,1:xp) pop(ma,xp+1:Nt)]; 13.	pop(end,:)=[];
14.	par=gadecode(pop,lo,hi,nbits); % convert binary to

APPENDIX B8

m. File: Sub-Function “gadecode(chrom,lo,hi,bits)”


1. function f=gadecode(chrom,lo,hi,bits)

	2. %
	gadecode.m

	3. %
	Decodes binary encripted parameters

	4. %
	

	5. %
	f=gadecode(chrom,lo,hi,bits,gray)

	6. %
	chrom = population

	7. %
	lo = minimum parameter value

	8. %
	hi = maximum parameter value

	9. %
	bits = number of bits/parameter



10.	% Haupt & Haupt 11.	% 2003
12. [M,N]=size(chrom);

13. npar=N/bits; % number of variables

14. quant=(0.5.^(1:bits)'); % quantization levels

15. quant=quant/sum(quant); % quantization levels normalized
16. ct=reshape(chrom',bits,npar*M)';% each column contains

17. % one variable

18. par=((ct*quant)*(hi-lo)+lo); % DA conversion and

19. % unnormalize varaibles

20. f=reshape(par,npar,M)';% reassemble population

APPENDIX B9

m. File: Sub-Function “prey(Xi,visual_distance,S,itr,max_itr,ntry,opt_type)”

1. function X_new=prey(Xi,Visual_distance,S,itr,max_itr,ntry,opt_type)
	2. %
	Execute the preying behaviour in an AFSA

	3. %
	opt_type is:

	4. %
	1 for maximization; and

	5. %
	2 for minimization.



6. V=Visual_distance;

7. T=0; % tested trials;

8. X_new=feval('move_fish',Xi,Visual_distance,itr,max_itr);

9. %	for u=1:length(X_new)

10. %	if X_new(u)>1

11. %	X_new(u)=X_new(u)-floor(X_new(u));

12. %	end

13. %	end

14. while T<ntry

15. Xj=feval('move_fish',Xi,V,itr,max_itr);

16. Yi=objF(Xi);

17. Yj=objF(Xj);

18. if opt_type==1

19. if Yj>Yi

20. X_new=feval('new_fish',Xi,Xj,S);

21. %	for u=1:length(X_new)

22. %	if X_new(u)>1

23. %	X_new(u)=X_new(u)-floor(X_new(u));

24. %	end

25. %	end

26. break

27. end

28. end

29. if opt_type==2

30. if Yj<Yi

31. X_new=feval('new_fish',Xi,Xj,S);

32. %	for u=1:length(X_new)

33. %	if X_new(u)>1

34. %	X_new(u)=X_new(u)-floor(X_new(u));

35. %	end

36. %	end

37. break

38. end

39. end

40.	T=T+1;

41.	End

APPENDIX B10

m. File: Sub-Function “swarm(Xi,Visual_distance,Crowdness_factor,S,itr,max_itr,ntry,opt
_type) ”




1. function X_new=swarm(Xi,Visual_distance,Crowdness_factor,S,itr,max_i tr,ntry,opt_type)
	2. %
	Execute the swarmming behaviour in an AFSA

	3. %
	opt_type is:

	4. %
	1 for maximization; and

	5. %
	2 for minimization.



6. V=Visual_distance;

7. C=Crowdness_factor;

8. Xj=feval('move_fish',Xi,Visual_distance,itr,max_itr);

9. D=feval('distance',Xi,Xj);

10.	[n,~]=size(Xi);

11.	nf=sum(D<V*ones(size(D)));

12.	Xc=(Xi+Xj)/2;

13. Yi=objF(Xi);

14. Yc=objF(Xc);

15. if opt_type==1

16. X_new=feval('prey',Xi,Visual_distance,S,itr,max_itr,nt ry,opt_type);
17. %	for u=1:length(X_new)

18. %	if X_new(u)>1

19. %	X_new(u)=X_new(u)-floor(X_new(u));

20. %	end

21. %	end

22. if Yc>Yi

23. if (nf/n)<C

24. X_new=feval('new_fish',Xi,Xc,S);

25. %	for u=1:length(X_new)

26. %	if X_new(u)>1

27. %	X_new(u)=X_new(u)-floor(X_new(u));

28. %	end

29. %	end

30. end

31. end

32. end

33. if opt_type==2

34. X_new=feval('prey',Xi,Visual_distance,S,itr,max_itr,nt ry,opt_type);
35. %	for u=1:length(X_new)

36. %	if X_new(u)>1

37. %	X_new(u)=X_new(u)-floor(X_new(u));

38. %	end

39. %	end

40. if Yc<Yi

41. if (nf/n)<C

42. X_new=feval('new_fish',Xi,Xc,S);

43. %	for u=1:length(X_new)

44. %	if X_new(u)>1

45. %	X_new(u)=X_new(u)-floor(X_new(u));

46. %	end

47. %	end

48. else

49. end

50. end

51. end

APPENDIX B11

m. File: Sub-Function “chase(Xi,Visual_distance,Crowdness_factor,S,itr,max_itr,ntry,opt
_type)”


1. function X_new=chase(Xi,Visual_distance,Crowdness_factor,S,itr,max_i tr,ntry,opt_type)
	2. %
	Execute the chasing behaviour in an AFSA

	3. %
	opt_type is:

	4. %
	1 for maximization; and

	5. %
	2 for minimization.



6. V=Visual_distance;

7. C=Crowdness_factor;

8. Xj=feval('move_fish',Xi,Visual_distance,itr,max_itr);

9. D=feval('distance',Xi,Xj);

10.	[n,~]=size(Xi);

11. nf=sum(D<V*ones(size(D)));

12. Yi=objF(Xi);

13. Yc=objF(Xj);

14. if opt_type==1

15. X_new=feval('prey',Xi,Visual_distance,S,itr,max_itr,nt ry,opt_type);
16. %	for u=1:length(X_new)

17. %	if X_new(u)>1

18. %	X_new(u)=X_new(u)-floor(X_new(u));

19. %	end

20. %	end

21. if Yc>Yi

22. if (nf/n)<C

23. X_new=feval('new_fish',Xi,Xj,S);

24. %	for u=1:length(X_new)

25. %	if X_new(u)>1

26. %	X_new(u)=X_new(u)-floor(X_new(u));

27. %	end

28. %	end

29. end

30. end

31. end

32. if opt_type==2

33. X_new=feval('prey',Xi,Visual_distance,S,itr,max_itr,nt ry,opt_type);
34. %	for u=1:length(X_new)

35. %	if X_new(u)>1

36. %	X_new(u)=X_new(u)-floor(X_new(u));

37. %	end

38. %	end

39. if Yc<Yi

40. if (nf/n)<C

41. X_new=feval('new_fish',Xi,Xj,S);

42. %	for u=1:length(X_new)

43. %	if X_new(u)>1

44. %	X_new(u)=X_new(u)-floor(X_new(u));

45. %	end

46. %	end

47. end

48. end

49. end
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